Spaces:
Runtime error
Runtime error
from skimage.transform import estimate_transform, AffineTransform | |
import numpy as np | |
from IPython import embed | |
import mediapipe as mp | |
import copy | |
mp_face_mesh = mp.solutions.face_mesh | |
FACEMESH_LEFT_EYE = [i for i in mp_face_mesh.FACEMESH_LEFT_EYE] | |
FACEMESH_RIGHT_EYE = [i for i in mp_face_mesh.FACEMESH_RIGHT_EYE] | |
FACEMESH_LEFT_EYEBROW = [i for i in mp_face_mesh.FACEMESH_LEFT_EYEBROW] | |
FACEMESH_RIGHT_EYEBROW = [i for i in mp_face_mesh.FACEMESH_RIGHT_EYEBROW] | |
# copy from draw_utils | |
FACEMESH_LIPS_OUTER_BOTTOM_LEFT = [(61,146),(146,91),(91,181),(181,84),(84,17)] | |
FACEMESH_LIPS_OUTER_BOTTOM_RIGHT = [(17,314),(314,405),(405,321),(321,375),(375,291)] | |
FACEMESH_LIPS_INNER_BOTTOM_LEFT = [(78,95),(95,88),(88,178),(178,87),(87,14)] | |
FACEMESH_LIPS_INNER_BOTTOM_RIGHT = [(14,317),(317,402),(402,318),(318,324),(324,308)] | |
FACEMESH_LIPS_OUTER_TOP_LEFT = [(61,185),(185,40),(40,39),(39,37),(37,0)] | |
FACEMESH_LIPS_OUTER_TOP_RIGHT = [(0,267),(267,269),(269,270),(270,409),(409,291)] | |
FACEMESH_LIPS_INNER_TOP_LEFT = [(78,191),(191,80),(80,81),(81,82),(82,13)] | |
FACEMESH_LIPS_INNER_TOP_RIGHT = [(13,312),(312,311),(311,310),(310,415),(415,308)] | |
FACEMESH_MOUSE = \ | |
FACEMESH_LIPS_OUTER_BOTTOM_LEFT + \ | |
FACEMESH_LIPS_OUTER_BOTTOM_RIGHT + \ | |
FACEMESH_LIPS_INNER_BOTTOM_LEFT + \ | |
FACEMESH_LIPS_INNER_BOTTOM_RIGHT + \ | |
FACEMESH_LIPS_OUTER_TOP_LEFT + \ | |
FACEMESH_LIPS_OUTER_TOP_RIGHT + \ | |
FACEMESH_LIPS_INNER_TOP_LEFT + \ | |
FACEMESH_LIPS_INNER_TOP_RIGHT | |
LANDMARK_IDXES_DICT = { | |
"left_eye" : sorted(list(set([j for i in FACEMESH_LEFT_EYE for j in i])) + [473]), | |
"right_eye" : sorted(list(set([j for i in FACEMESH_RIGHT_EYE for j in i])) + [468]), | |
"mouse" : sorted(list(set([j for i in FACEMESH_MOUSE for j in i]))), | |
"nose" : sorted(list(set([1,4,5,274,275,281,44,45,51,220,440]))), | |
"left_eyebow" : sorted(list(set([j for i in FACEMESH_LEFT_EYEBROW for j in i]))), | |
"right_eyebow" : sorted(list(set([j for i in FACEMESH_RIGHT_EYEBROW for j in i]))), | |
} | |
def create_perspective_matrix(aspect_ratio): | |
kDegreesToRadians = np.pi / 180. | |
near = 1 | |
far = 10000 | |
perspective_matrix = np.zeros(16, dtype=np.float32) | |
# Standard perspective projection matrix calculations. | |
f = 1.0 / np.tan(kDegreesToRadians * 63 / 2.) | |
denom = 1.0 / (near - far) | |
perspective_matrix[0] = f / aspect_ratio | |
perspective_matrix[5] = f | |
perspective_matrix[10] = (near + far) * denom | |
perspective_matrix[11] = -1. | |
perspective_matrix[14] = 1. * far * near * denom | |
# If the environment's origin point location is in the top left corner, | |
# then skip additional flip along Y-axis is required to render correctly. | |
perspective_matrix[5] *= -1. | |
return perspective_matrix | |
def project_points_with_trans(points_3d, transformation_matrix, image_shape): | |
P = create_perspective_matrix(image_shape[1] / image_shape[0]).reshape(4, 4).T | |
L, N, _ = points_3d.shape | |
projected_points = np.zeros((L, N, 2)) | |
#embed() | |
for i in range(L): | |
points_3d_frame = points_3d[i] | |
ones = np.ones((points_3d_frame.shape[0], 1)) | |
points_3d_homogeneous = np.hstack([points_3d_frame, ones]) | |
transformed_points = points_3d_homogeneous @ transformation_matrix[i].T @ P | |
projected_points_frame = transformed_points[:, :2] / transformed_points[:, 3, np.newaxis] # -1 ~ 1 | |
projected_points_frame[:, 0] = (projected_points_frame[:, 0] + 1) * 0.5 * image_shape[1] | |
projected_points_frame[:, 1] = (projected_points_frame[:, 1] + 1) * 0.5 * image_shape[0] | |
projected_points[i] = projected_points_frame | |
return projected_points | |
def project_vertices_from_ref2tgt(ref_lmks3d, tgt_trans_mat): | |
#eye_point_idxes | |
projected_vertices = project_points_with_trans(ref_lmks3d[np.newaxis, ...], tgt_trans_mat[np.newaxis, ...], [512, 512])[0] | |
return projected_vertices | |
def old_motion_sync_old(sequence_driver_det, reference_det): | |
assert type(sequence_driver_det) is list | |
assert type(sequence_driver_det[0]) is type(reference_det) | |
lmks3d_mean = sum([i["lmks3d"] for i in sequence_driver_det]) / len(sequence_driver_det) | |
overall_transform = estimate_transform('affine', lmks3d_mean, reference_det["lmks3d"]) | |
eye_idxes_all = LANDMARK_IDXES_DICT["left_eye"] + LANDMARK_IDXES_DICT["right_eye"] | |
for det_id in range(len(sequence_driver_det)): | |
trans = estimate_transform('affine', sequence_driver_det[det_id]["lmks"][eye_idxes_all], sequence_driver_det[det_id]["lmks3d"][eye_idxes_all]) | |
sequence_driver_det[det_id]["lmks3d"] = np.vstack([ | |
sequence_driver_det[det_id]["lmks3d"], | |
trans(sequence_driver_det[det_id]["lmks"][-10:]) | |
]) | |
trans_mats = [] | |
for det in sequence_driver_det: | |
trans_mats.append(det["trans_mat"] @ np.linalg.inv(sequence_driver_det[0]["trans_mat"])) | |
trans_mats_smooth = [] | |
smooth_margin = 2 | |
for tm_itx in range(len(trans_mats)): | |
smooth_idxes = [i for i in range(tm_itx - smooth_margin, tm_itx + smooth_margin + 1) if i >= 0 and i < len(trans_mats)] | |
tm = sum([trans_mats[i] for i in smooth_idxes]) / len(smooth_idxes) | |
trans_mats_smooth.append(tm) | |
lmks3d_smooth = [] | |
smooth_margin = 1 | |
for det_itx in range(len(sequence_driver_det)): | |
smooth_idxes = [i for i in range(det_itx - smooth_margin, det_itx + smooth_margin + 1) if i >= 0 and i < len(sequence_driver_det)] | |
lmks3d_smooth.append(sum([sequence_driver_det[i]["lmks3d"] for i in smooth_idxes]) / len(smooth_idxes)) | |
for det_itx, lmks3d in enumerate(lmks3d_smooth): | |
sequence_driver_det[det_itx]["lmks3d"] = lmks3d | |
projected_vertices_list = [] | |
for det_itx in range(len(sequence_driver_det)): | |
aligned_3d = overall_transform(sequence_driver_det[det_itx]["lmks3d"]) | |
tmat = reference_det["trans_mat"] @ trans_mats_smooth[det_itx] | |
projected_vertices = project_vertices_from_ref2tgt(aligned_3d, tmat) | |
projected_vertices_list.append(projected_vertices) | |
# note : use normed=False after motion_sync, when draw(ing)_landmarks | |
# kps_image = vis.draw_landmarks((512, 512), projected_vertices, normed=False) | |
return projected_vertices_list | |
def motion_sync(sequence_driver_det, reference_det, per_landmark_align=True): | |
assert type(sequence_driver_det) is list | |
assert type(sequence_driver_det[0]) is type(reference_det) | |
eye_idxes_all = [i for i in sorted(list(set(LANDMARK_IDXES_DICT["left_eye"] + LANDMARK_IDXES_DICT["right_eye"]))) if i < len(reference_det["lmks3d"])] | |
for det_id in range(len(sequence_driver_det)): | |
trans_iris = estimate_transform('affine', sequence_driver_det[det_id]["lmks"][eye_idxes_all], sequence_driver_det[det_id]["lmks3d"][eye_idxes_all]) | |
sequence_driver_det[det_id]["lmks3d"] = np.vstack([ | |
sequence_driver_det[det_id]["lmks3d"], | |
trans_iris(sequence_driver_det[det_id]["lmks"][-10:]) | |
]) | |
trans_iris = estimate_transform('affine', reference_det["lmks"][eye_idxes_all], reference_det["lmks3d"][eye_idxes_all]) | |
reference_det["lmks3d"] = np.vstack([ | |
reference_det["lmks3d"], | |
trans_iris(reference_det["lmks"][-10:]) | |
]) | |
lmks3d_mean = sum([i["lmks3d"] for i in sequence_driver_det]) / len(sequence_driver_det) | |
landmark_trans_dict = {} | |
for landmark_name, landmark_idxes in LANDMARK_IDXES_DICT.items(): | |
rf_lm = reference_det["lmks3d"][landmark_idxes] | |
dr_lm = lmks3d_mean[landmark_idxes] | |
landmark_trans_dict[landmark_name] = estimate_transform('affine', dr_lm, rf_lm) | |
#embed() | |
overall_transform = estimate_transform('affine', lmks3d_mean, reference_det["lmks3d"]) | |
#embed() | |
#lmks3d_mean = sum([i["lmks3d"] for i in sequence_driver_det]) / len(sequence_driver_det) | |
#overall_transform = estimate_transform('affine', lmks3d_mean, reference_det["lmks3d"]) | |
#driver_start_center = sequence_driver_det[0]["lmks3d"].mean(axis=0) | |
#reference_center = reference_det["lmks3d"].mean(axis=0) | |
#driver_start_size = ((sequence_driver_det[0]["lmks3d"] - driver_start_center)**2).sum()**(0.5) | |
#reference_size = ((reference_det["lmks3d"] - reference_center)**2).sum()**(0.5) | |
#reference_det_lmks3d_rescale = (reference_det["lmks3d"] - reference_center) / reference_size * driver_start_size + driver_start_center | |
#reference_transform_back = estimate_transform('affine', reference_det_lmks3d_rescale, reference_det["lmks3d"]) | |
#driver_lmks3d_mean = sum([i["lmks3d"] for i in sequence_driver_det]) / len(sequence_driver_det) | |
#facial_transform = estimate_transform('affine', driver_lmks3d_mean, reference_det_lmks3d_rescale) | |
#for det_id in range(len(sequence_driver_det)): | |
# trans = estimate_transform('affine', sequence_driver_det[det_id]["lmks"][:-10], sequence_driver_det[det_id]["lmks3d"]) | |
# sequence_driver_det[det_id]["lmks3d"] = trans(sequence_driver_det[det_id]["lmks"]) | |
trans_mats = [] | |
for det in sequence_driver_det: | |
trans_mats.append(det["trans_mat"] @ np.linalg.inv(sequence_driver_det[0]["trans_mat"])) | |
trans_mats_smooth = [] | |
smooth_margin = 2 | |
for tm_itx in range(len(trans_mats)): | |
smooth_idxes = [i for i in range(tm_itx - smooth_margin, tm_itx + smooth_margin + 1) if i >= 0 and i < len(trans_mats)] | |
tm = sum([trans_mats[i] for i in smooth_idxes]) / len(smooth_idxes) | |
trans_mats_smooth.append(tm) | |
lmks3d_smooth = [] | |
smooth_margin = 1 | |
for det_itx in range(len(sequence_driver_det)): | |
smooth_idxes = [i for i in range(det_itx - smooth_margin, det_itx + smooth_margin + 1) if i >= 0 and i < len(sequence_driver_det)] | |
lmks3d_smooth.append(sum([sequence_driver_det[i]["lmks3d"] for i in smooth_idxes]) / len(smooth_idxes)) | |
for det_itx, lmks3d in enumerate(lmks3d_smooth): | |
sequence_driver_det[det_itx]["lmks3d"] = lmks3d | |
projected_vertices_list = [] | |
for det_itx in range(len(sequence_driver_det)): | |
#aligned_3d = overall_transform(sequence_driver_det[det_itx]["lmks3d"]) | |
aligned_3d = copy.deepcopy(sequence_driver_det[det_itx]["lmks3d"]) | |
if per_landmark_align: | |
for landmark_name, landmark_idxes in LANDMARK_IDXES_DICT.items(): | |
dr_lm = sequence_driver_det[det_itx]["lmks3d"][landmark_idxes] | |
lm_trans = landmark_trans_dict[landmark_name] | |
aligned_3d[landmark_idxes] = lm_trans(dr_lm) | |
#aligned_3d = lmks3d_mean | |
tmat = trans_mats_smooth[det_itx] @ reference_det["trans_mat"] | |
projected_vertices = project_vertices_from_ref2tgt(aligned_3d, tmat) | |
projected_vertices_list.append(projected_vertices) | |
continue | |
trans_ref_aligned_to_driver = (sequence_driver_det[det_itx]["trans_mat"]) @ np.linalg.inv(reference_det["trans_mat"]) | |
ref_aligned_to_driver = AffineTransform(trans_ref_aligned_to_driver)(reference_det["lmks3d"]) | |
det["trans_mat"] @ np.linalg.inv(sequence_driver_det[0]["trans_mat"]) | |
aligned_3d = sequence_driver_det[det_itx]["lmks3d"] | |
#facial_transform(sequence_driver_det[det_itx]["lmks3d"]) | |
#tmat = reference_det["trans_mat"] @ trans_mats_smooth[det_itx] | |
tmat = sequence_driver_det[det_itx]["trans_mat"] @ trans_mats_smooth[det_itx] #@ reference_transform_back.params | |
projected_vertices = project_vertices_from_ref2tgt(aligned_3d, tmat) | |
#embed() | |
#projected_vertices = reference_transform_back(projected_vertices) | |
projected_vertices_list.append(projected_vertices) | |
# note : use normed=False after motion_sync, when draw(ing)_landmarks | |
# kps_image = vis.draw_landmarks((512, 512), projected_vertices, normed=False) | |
return projected_vertices_list | |