EchoMimic / webgui.py
fffiloni's picture
Update webgui.py
0616d16 verified
raw
history blame
10.8 kB
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
'''
webui
'''
import os
import random
from datetime import datetime
from pathlib import Path
import cv2
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler
from omegaconf import OmegaConf
from PIL import Image
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d_echo import EchoUNet3DConditionModel
from src.models.whisper.audio2feature import load_audio_model
from src.pipelines.pipeline_echo_mimic import Audio2VideoPipeline
from src.utils.util import save_videos_grid, crop_and_pad
from src.models.face_locator import FaceLocator
from moviepy.editor import VideoFileClip, AudioFileClip
from facenet_pytorch import MTCNN
import argparse
import gradio as gr
import huggingface_hub
huggingface_hub.snapshot_download(
repo_id='BadToBest/EchoMimic',
local_dir='./pretrained_weights',
local_dir_use_symlinks=False,
)
default_values = {
"width": 512,
"height": 512,
"length": 1200,
"seed": 420,
"facemask_dilation_ratio": 0.1,
"facecrop_dilation_ratio": 0.5,
"context_frames": 12,
"context_overlap": 3,
"cfg": 2.5,
"steps": 30,
"sample_rate": 16000,
"fps": 24,
"device": "cuda"
}
ffmpeg_path = os.getenv('FFMPEG_PATH')
if ffmpeg_path is None:
print("please download ffmpeg-static and export to FFMPEG_PATH. \nFor example: export FFMPEG_PATH=/musetalk/ffmpeg-4.4-amd64-static")
elif ffmpeg_path not in os.getenv('PATH'):
print("add ffmpeg to path")
os.environ["PATH"] = f"{ffmpeg_path}:{os.environ['PATH']}"
config_path = "./configs/prompts/animation.yaml"
config = OmegaConf.load(config_path)
if config.weight_dtype == "fp16":
weight_dtype = torch.float16
else:
weight_dtype = torch.float32
device = "cuda"
if not torch.cuda.is_available():
device = "cpu"
inference_config_path = config.inference_config
infer_config = OmegaConf.load(inference_config_path)
############# model_init started #############
## vae init
vae = AutoencoderKL.from_pretrained(config.pretrained_vae_path).to("cuda", dtype=weight_dtype)
## reference net init
reference_unet = UNet2DConditionModel.from_pretrained(
config.pretrained_base_model_path,
subfolder="unet",
).to(dtype=weight_dtype, device=device)
reference_unet.load_state_dict(torch.load(config.reference_unet_path, map_location="cpu"))
## denoising net init
if os.path.exists(config.motion_module_path):
### stage1 + stage2
denoising_unet = EchoUNet3DConditionModel.from_pretrained_2d(
config.pretrained_base_model_path,
config.motion_module_path,
subfolder="unet",
unet_additional_kwargs=infer_config.unet_additional_kwargs,
).to(dtype=weight_dtype, device=device)
else:
### only stage1
denoising_unet = EchoUNet3DConditionModel.from_pretrained_2d(
config.pretrained_base_model_path,
"",
subfolder="unet",
unet_additional_kwargs={
"use_motion_module": False,
"unet_use_temporal_attention": False,
"cross_attention_dim": infer_config.unet_additional_kwargs.cross_attention_dim
}
).to(dtype=weight_dtype, device=device)
denoising_unet.load_state_dict(torch.load(config.denoising_unet_path, map_location="cpu"), strict=False)
## face locator init
face_locator = FaceLocator(320, conditioning_channels=1, block_out_channels=(16, 32, 96, 256)).to(dtype=weight_dtype, device="cuda")
face_locator.load_state_dict(torch.load(config.face_locator_path))
## load audio processor params
audio_processor = load_audio_model(model_path=config.audio_model_path, device=device)
## load face detector params
face_detector = MTCNN(image_size=320, margin=0, min_face_size=20, thresholds=[0.6, 0.7, 0.7], factor=0.709, post_process=True, device=device)
############# model_init finished #############
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
scheduler = DDIMScheduler(**sched_kwargs)
pipe = Audio2VideoPipeline(
vae=vae,
reference_unet=reference_unet,
denoising_unet=denoising_unet,
audio_guider=audio_processor,
face_locator=face_locator,
scheduler=scheduler,
).to("cuda", dtype=weight_dtype)
def select_face(det_bboxes, probs):
## max face from faces that the prob is above 0.8
## box: xyxy
if det_bboxes is None or probs is None:
return None
filtered_bboxes = []
for bbox_i in range(len(det_bboxes)):
if probs[bbox_i] > 0.8:
filtered_bboxes.append(det_bboxes[bbox_i])
if len(filtered_bboxes) == 0:
return None
sorted_bboxes = sorted(filtered_bboxes, key=lambda x:(x[3]-x[1]) * (x[2] - x[0]), reverse=True)
return sorted_bboxes[0]
def process_video(uploaded_img, uploaded_audio, width, height, length, seed, facemask_dilation_ratio, facecrop_dilation_ratio, context_frames, context_overlap, cfg, steps, sample_rate, fps, device):
if seed is not None and seed > -1:
generator = torch.manual_seed(seed)
else:
generator = torch.manual_seed(random.randint(100, 1000000))
#### face musk prepare
face_img = cv2.imread(uploaded_img)
face_mask = np.zeros((face_img.shape[0], face_img.shape[1])).astype('uint8')
det_bboxes, probs = face_detector.detect(face_img)
select_bbox = select_face(det_bboxes, probs)
if select_bbox is None:
face_mask[:, :] = 255
else:
xyxy = select_bbox[:4]
xyxy = np.round(xyxy).astype('int')
rb, re, cb, ce = xyxy[1], xyxy[3], xyxy[0], xyxy[2]
r_pad = int((re - rb) * facemask_dilation_ratio)
c_pad = int((ce - cb) * facemask_dilation_ratio)
face_mask[rb - r_pad : re + r_pad, cb - c_pad : ce + c_pad] = 255
#### face crop
r_pad_crop = int((re - rb) * facecrop_dilation_ratio)
c_pad_crop = int((ce - cb) * facecrop_dilation_ratio)
crop_rect = [max(0, cb - c_pad_crop), max(0, rb - r_pad_crop), min(ce + c_pad_crop, face_img.shape[1]), min(re + r_pad_crop, face_img.shape[0])]
face_img = crop_and_pad(face_img, crop_rect)
face_mask = crop_and_pad(face_mask, crop_rect)
face_img = cv2.resize(face_img, (width, height))
face_mask = cv2.resize(face_mask, (width, height))
ref_image_pil = Image.fromarray(face_img[:, :, [2, 1, 0]])
face_mask_tensor = torch.Tensor(face_mask).to(dtype=weight_dtype, device="cuda").unsqueeze(0).unsqueeze(0).unsqueeze(0) / 255.0
video = pipe(
ref_image_pil,
uploaded_audio,
face_mask_tensor,
width,
height,
length,
steps,
cfg,
generator=generator,
audio_sample_rate=sample_rate,
context_frames=context_frames,
fps=fps,
context_overlap=context_overlap
).videos
save_dir = Path("output/tmp")
save_dir.mkdir(exist_ok=True, parents=True)
output_video_path = save_dir / "output_video.mp4"
save_videos_grid(video, str(output_video_path), n_rows=1, fps=fps)
video_clip = VideoFileClip(str(output_video_path))
audio_clip = AudioFileClip(uploaded_audio)
final_output_path = save_dir / "output_video_with_audio.mp4"
video_clip = video_clip.set_audio(audio_clip)
video_clip.write_videofile(str(final_output_path), codec="libx264", audio_codec="aac")
return final_output_path
with gr.Blocks() as demo:
gr.Markdown('# EchoMimic')
gr.Markdown('![]()')
with gr.Row():
with gr.Column():
uploaded_img = gr.Image(type="filepath", label="Reference Image")
uploaded_audio = gr.Audio(type="filepath", label="Input Audio")
with gr.Column():
output_video = gr.Video()
with gr.Accordion("Configuration", open=False):
width = gr.Slider(label="Width", minimum=128, maximum=1024, value=default_values["width"])
height = gr.Slider(label="Height", minimum=128, maximum=1024, value=default_values["height"])
length = gr.Slider(label="Length", minimum=100, maximum=5000, value=default_values["length"])
seed = gr.Slider(label="Seed", minimum=0, maximum=10000, value=default_values["seed"])
facemask_dilation_ratio = gr.Slider(label="Facemask Dilation Ratio", minimum=0.0, maximum=1.0, step=0.01, value=default_values["facemask_dilation_ratio"])
facecrop_dilation_ratio = gr.Slider(label="Facecrop Dilation Ratio", minimum=0.0, maximum=1.0, step=0.01, value=default_values["facecrop_dilation_ratio"])
context_frames = gr.Slider(label="Context Frames", minimum=0, maximum=50, step=1, value=default_values["context_frames"])
context_overlap = gr.Slider(label="Context Overlap", minimum=0, maximum=10, step=1, value=default_values["context_overlap"])
cfg = gr.Slider(label="CFG", minimum=0.0, maximum=10.0, step=0.1, value=default_values["cfg"])
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=default_values["steps"])
sample_rate = gr.Slider(label="Sample Rate", minimum=8000, maximum=48000, step=1000, value=default_values["sample_rate"])
fps = gr.Slider(label="FPS", minimum=1, maximum=60, step=1, value=default_values["fps"])
device = gr.Radio(label="Device", choices=["cuda", "cpu"], value=default_values["device"])
generate_button = gr.Button("Generate Video")
def generate_video(uploaded_img, uploaded_audio, width, height, length, seed, facemask_dilation_ratio, facecrop_dilation_ratio, context_frames, context_overlap, cfg, steps, sample_rate, fps, device):
final_output_path = process_video(
uploaded_img, uploaded_audio, width, height, length, seed, facemask_dilation_ratio, facecrop_dilation_ratio, context_frames, context_overlap, cfg, steps, sample_rate, fps, device
)
output_video= final_output_path
return final_output_path
generate_button.click(
generate_video,
inputs=[
uploaded_img,
uploaded_audio,
width,
height,
length,
seed,
facemask_dilation_ratio,
facecrop_dilation_ratio,
context_frames,
context_overlap,
cfg,
steps,
sample_rate,
fps,
device
],
outputs=output_video
)
parser = argparse.ArgumentParser(description='EchoMimic')
parser.add_argument('--server_name', type=str, default='0.0.0.0', help='Server name')
parser.add_argument('--server_port', type=int, default=7680, help='Server port')
args = parser.parse_args()
# demo.launch(server_name=args.server_name, server_port=args.server_port, inbrowser=True)
if __name__ == '__main__':
demo.launch()
#demo.launch(server_name=args.server_name, server_port=args.server_port, inbrowser=True)