File size: 1,465 Bytes
4045a73
 
865ddb0
4045a73
 
 
e46cbc4
4045a73
 
1688517
4045a73
aad4b49
ef9c3f5
 
 
 
 
 
 
 
4045a73
 
 
 
 
 
 
 
 
 
 
ef9c3f5
 
4045a73
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import gradio as gr
import subprocess
import os

def generate(image, prompt, seed):
    print(image, prompt, seed)
    command = f"python handrefiner.py --input_img {image} --out_dir output --strength 0.55 --weights models/inpaint_depth_control.ckpt --prompt '{prompt}' --seed {seed}"
    try:
        result = subprocess.run(command, shell=True, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
        output_path = 'output'
        print("Output:", result.stdout)
        print(output_path)
        # List all files and directories in the given directory
        contents = os.listdir(directory_path)
        
        # Print the contents
        for item in contents:
            print(item)
        
        return "Done"
    except subprocess.CalledProcessError as e:
        print("Error:", e.stderr)
        return None

with gr.Blocks() as demo:
    with gr.Row():
      with gr.Column():
          image = gr.Image(type='filepath')
          textbox = gr.Textbox(show_label=False, value="a person facing the camera, making a hand gesture, indoor")
          seed = gr.Slider(minimum=0, maximum=1000000, value=643534)
          button = gr.Button()
      #output_image = gr.Image(show_label=False, type="filepath", interactive=False, height=512, width=512)
      output_image = gr.Textbox()
    button.click(fn=generate, inputs=[image, textbox, seed], outputs=[output_image])

demo.queue().launch(inline=False, share=True, debug=True)