Spaces:
Running
Running
File size: 1,736 Bytes
f474836 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
import torch
from contextlib import contextmanager
high_vram = False
gpu = torch.device('cuda')
cpu = torch.device('cpu')
torch.zeros((1, 1)).to(gpu, torch.float32)
torch.cuda.empty_cache()
models_in_gpu = []
@contextmanager
def movable_bnb_model(m):
if hasattr(m, 'quantization_method'):
m.quantization_method_backup = m.quantization_method
del m.quantization_method
try:
yield None
finally:
if hasattr(m, 'quantization_method_backup'):
m.quantization_method = m.quantization_method_backup
del m.quantization_method_backup
return
def load_models_to_gpu(models):
global models_in_gpu
if not isinstance(models, (tuple, list)):
models = [models]
models_to_remain = [m for m in set(models) if m in models_in_gpu]
models_to_load = [m for m in set(models) if m not in models_in_gpu]
models_to_unload = [m for m in set(models_in_gpu) if m not in models_to_remain]
if not high_vram:
for m in models_to_unload:
with movable_bnb_model(m):
m.to(cpu)
print('Unload to CPU:', m.__class__.__name__)
models_in_gpu = models_to_remain
for m in models_to_load:
with movable_bnb_model(m):
m.to(gpu)
print('Load to GPU:', m.__class__.__name__)
models_in_gpu = list(set(models_in_gpu + models))
torch.cuda.empty_cache()
return
def unload_all_models(extra_models=None):
global models_in_gpu
if extra_models is None:
extra_models = []
if not isinstance(extra_models, (tuple, list)):
extra_models = [extra_models]
models_in_gpu = list(set(models_in_gpu + extra_models))
return load_models_to_gpu([])
|