File size: 13,255 Bytes
f474836
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import os

os.environ['HF_HOME'] = os.path.join(os.path.dirname(__file__), 'hf_download')
result_dir = os.path.join('./', 'results')
os.makedirs(result_dir, exist_ok=True)


import functools
import os
import random
import gradio as gr
import numpy as np
import torch
import wd14tagger
import memory_management
import uuid

from PIL import Image
from diffusers_helper.code_cond import unet_add_coded_conds
from diffusers_helper.cat_cond import unet_add_concat_conds
from diffusers_helper.k_diffusion import KDiffusionSampler
from diffusers import AutoencoderKL, UNet2DConditionModel
from diffusers.models.attention_processor import AttnProcessor2_0
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers_vdm.pipeline import LatentVideoDiffusionPipeline
from diffusers_vdm.utils import resize_and_center_crop, save_bcthw_as_mp4


class ModifiedUNet(UNet2DConditionModel):
    @classmethod
    def from_config(cls, *args, **kwargs):
        m = super().from_config(*args, **kwargs)
        unet_add_concat_conds(unet=m, new_channels=4)
        unet_add_coded_conds(unet=m, added_number_count=1)
        return m


model_name = 'lllyasviel/paints_undo_single_frame'
tokenizer = CLIPTokenizer.from_pretrained(model_name, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(model_name, subfolder="text_encoder").to(torch.float16)
vae = AutoencoderKL.from_pretrained(model_name, subfolder="vae").to(torch.bfloat16)  # bfloat16 vae
unet = ModifiedUNet.from_pretrained(model_name, subfolder="unet").to(torch.float16)

unet.set_attn_processor(AttnProcessor2_0())
vae.set_attn_processor(AttnProcessor2_0())

video_pipe = LatentVideoDiffusionPipeline.from_pretrained(
    'lllyasviel/paints_undo_multi_frame',
    fp16=True
)

memory_management.unload_all_models([
    video_pipe.unet, video_pipe.vae, video_pipe.text_encoder, video_pipe.image_projection, video_pipe.image_encoder,
    unet, vae, text_encoder
])

k_sampler = KDiffusionSampler(
    unet=unet,
    timesteps=1000,
    linear_start=0.00085,
    linear_end=0.020,
    linear=True
)


def find_best_bucket(h, w, options):
    min_metric = float('inf')
    best_bucket = None
    for (bucket_h, bucket_w) in options:
        metric = abs(h * bucket_w - w * bucket_h)
        if metric <= min_metric:
            min_metric = metric
            best_bucket = (bucket_h, bucket_w)
    return best_bucket


@torch.inference_mode()
def encode_cropped_prompt_77tokens(txt: str):
    memory_management.load_models_to_gpu(text_encoder)
    cond_ids = tokenizer(txt,
                         padding="max_length",
                         max_length=tokenizer.model_max_length,
                         truncation=True,
                         return_tensors="pt").input_ids.to(device=text_encoder.device)
    text_cond = text_encoder(cond_ids, attention_mask=None).last_hidden_state
    return text_cond


@torch.inference_mode()
def pytorch2numpy(imgs):
    results = []
    for x in imgs:
        y = x.movedim(0, -1)
        y = y * 127.5 + 127.5
        y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8)
        results.append(y)
    return results


@torch.inference_mode()
def numpy2pytorch(imgs):
    h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.5 - 1.0
    h = h.movedim(-1, 1)
    return h


def resize_without_crop(image, target_width, target_height):
    pil_image = Image.fromarray(image)
    resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS)
    return np.array(resized_image)


@torch.inference_mode()
def interrogator_process(x):
    return wd14tagger.default_interrogator(x)


@torch.inference_mode()
def process(input_fg, prompt, input_undo_steps, image_width, image_height, seed, steps, n_prompt, cfg,
            progress=gr.Progress()):
    rng = torch.Generator(device=memory_management.gpu).manual_seed(int(seed))

    memory_management.load_models_to_gpu(vae)
    fg = resize_and_center_crop(input_fg, image_width, image_height)
    concat_conds = numpy2pytorch([fg]).to(device=vae.device, dtype=vae.dtype)
    concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor

    memory_management.load_models_to_gpu(text_encoder)
    conds = encode_cropped_prompt_77tokens(prompt)
    unconds = encode_cropped_prompt_77tokens(n_prompt)

    memory_management.load_models_to_gpu(unet)
    fs = torch.tensor(input_undo_steps).to(device=unet.device, dtype=torch.long)
    initial_latents = torch.zeros_like(concat_conds)
    concat_conds = concat_conds.to(device=unet.device, dtype=unet.dtype)
    latents = k_sampler(
        initial_latent=initial_latents,
        strength=1.0,
        num_inference_steps=steps,
        guidance_scale=cfg,
        batch_size=len(input_undo_steps),
        generator=rng,
        prompt_embeds=conds,
        negative_prompt_embeds=unconds,
        cross_attention_kwargs={'concat_conds': concat_conds, 'coded_conds': fs},
        same_noise_in_batch=True,
        progress_tqdm=functools.partial(progress.tqdm, desc='Generating Key Frames')
    ).to(vae.dtype) / vae.config.scaling_factor

    memory_management.load_models_to_gpu(vae)
    pixels = vae.decode(latents).sample
    pixels = pytorch2numpy(pixels)
    pixels = [fg] + pixels + [np.zeros_like(fg) + 255]

    return pixels


@torch.inference_mode()
def process_video_inner(image_1, image_2, prompt, seed=123, steps=25, cfg_scale=7.5, fs=3, progress_tqdm=None):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)

    frames = 16

    target_height, target_width = find_best_bucket(
        image_1.shape[0], image_1.shape[1],
        options=[(320, 512), (384, 448), (448, 384), (512, 320)]
    )

    image_1 = resize_and_center_crop(image_1, target_width=target_width, target_height=target_height)
    image_2 = resize_and_center_crop(image_2, target_width=target_width, target_height=target_height)
    input_frames = numpy2pytorch([image_1, image_2])
    input_frames = input_frames.unsqueeze(0).movedim(1, 2)

    memory_management.load_models_to_gpu(video_pipe.text_encoder)
    positive_text_cond = video_pipe.encode_cropped_prompt_77tokens(prompt)
    negative_text_cond = video_pipe.encode_cropped_prompt_77tokens("")

    memory_management.load_models_to_gpu([video_pipe.image_projection, video_pipe.image_encoder])
    input_frames = input_frames.to(device=video_pipe.image_encoder.device, dtype=video_pipe.image_encoder.dtype)
    positive_image_cond = video_pipe.encode_clip_vision(input_frames)
    positive_image_cond = video_pipe.image_projection(positive_image_cond)
    negative_image_cond = video_pipe.encode_clip_vision(torch.zeros_like(input_frames))
    negative_image_cond = video_pipe.image_projection(negative_image_cond)

    memory_management.load_models_to_gpu([video_pipe.vae])
    input_frames = input_frames.to(device=video_pipe.vae.device, dtype=video_pipe.vae.dtype)
    input_frame_latents, vae_hidden_states = video_pipe.encode_latents(input_frames, return_hidden_states=True)
    first_frame = input_frame_latents[:, :, 0]
    last_frame = input_frame_latents[:, :, 1]
    concat_cond = torch.stack([first_frame] + [torch.zeros_like(first_frame)] * (frames - 2) + [last_frame], dim=2)

    memory_management.load_models_to_gpu([video_pipe.unet])
    latents = video_pipe(
        batch_size=1,
        steps=int(steps),
        guidance_scale=cfg_scale,
        positive_text_cond=positive_text_cond,
        negative_text_cond=negative_text_cond,
        positive_image_cond=positive_image_cond,
        negative_image_cond=negative_image_cond,
        concat_cond=concat_cond,
        fs=fs,
        progress_tqdm=progress_tqdm
    )

    memory_management.load_models_to_gpu([video_pipe.vae])
    video = video_pipe.decode_latents(latents, vae_hidden_states)
    return video, image_1, image_2


@torch.inference_mode()
def process_video(keyframes, prompt, steps, cfg, fps, seed, progress=gr.Progress()):
    result_frames = []
    cropped_images = []

    for i, (im1, im2) in enumerate(zip(keyframes[:-1], keyframes[1:])):
        im1 = np.array(Image.open(im1[0]))
        im2 = np.array(Image.open(im2[0]))
        frames, im1, im2 = process_video_inner(
            im1, im2, prompt, seed=seed + i, steps=steps, cfg_scale=cfg, fs=3,
            progress_tqdm=functools.partial(progress.tqdm, desc=f'Generating Videos ({i + 1}/{len(keyframes) - 1})')
        )
        result_frames.append(frames[:, :, :-1, :, :])
        cropped_images.append([im1, im2])

    video = torch.cat(result_frames, dim=2)
    video = torch.flip(video, dims=[2])

    uuid_name = str(uuid.uuid4())
    output_filename = os.path.join(result_dir, uuid_name + '.mp4')
    Image.fromarray(cropped_images[0][0]).save(os.path.join(result_dir, uuid_name + '.png'))
    video = save_bcthw_as_mp4(video, output_filename, fps=fps)
    video = [x.cpu().numpy() for x in video]
    return output_filename, video


block = gr.Blocks().queue()
with block:
    gr.Markdown('# Paints-Undo')

    with gr.Accordion(label='Step 1: Upload Image and Generate Prompt', open=True):
        with gr.Row():
            with gr.Column():
                input_fg = gr.Image(sources=['upload'], type="numpy", label="Image", height=512)
            with gr.Column():
                prompt_gen_button = gr.Button(value="Generate Prompt", interactive=False)
                prompt = gr.Textbox(label="Output Prompt", interactive=True)

    with gr.Accordion(label='Step 2: Generate Key Frames', open=True):
        with gr.Row():
            with gr.Column():
                input_undo_steps = gr.Dropdown(label="Operation Steps", value=[400, 600, 800, 900, 950, 999],
                                               choices=list(range(1000)), multiselect=True)
                seed = gr.Slider(label='Stage 1 Seed', minimum=0, maximum=50000, step=1, value=12345)
                image_width = gr.Slider(label="Image Width", minimum=256, maximum=1024, value=512, step=64)
                image_height = gr.Slider(label="Image Height", minimum=256, maximum=1024, value=640, step=64)
                steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=50, step=1)
                cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=3.0, step=0.01)
                n_prompt = gr.Textbox(label="Negative Prompt",
                                      value='lowres, bad anatomy, bad hands, cropped, worst quality')

            with gr.Column():
                key_gen_button = gr.Button(value="Generate Key Frames", interactive=False)
                result_gallery = gr.Gallery(height=512, object_fit='contain', label='Outputs', columns=4)

    with gr.Accordion(label='Step 3: Generate All Videos', open=True):
        with gr.Row():
            with gr.Column():
                i2v_input_text = gr.Text(label='Prompts', value='1girl, masterpiece, best quality')
                i2v_seed = gr.Slider(label='Stage 2 Seed', minimum=0, maximum=50000, step=1, value=123)
                i2v_cfg_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='CFG Scale', value=7.5,
                                          elem_id="i2v_cfg_scale")
                i2v_steps = gr.Slider(minimum=1, maximum=60, step=1, elem_id="i2v_steps",
                                      label="Sampling steps", value=50)
                i2v_fps = gr.Slider(minimum=1, maximum=30, step=1, elem_id="i2v_motion", label="FPS", value=4)
            with gr.Column():
                i2v_end_btn = gr.Button("Generate Video", interactive=False)
                i2v_output_video = gr.Video(label="Generated Video", elem_id="output_vid", autoplay=True,
                                            show_share_button=True, height=512)
        with gr.Row():
            i2v_output_images = gr.Gallery(height=512, label="Output Frames", object_fit="contain", columns=8)

    input_fg.change(lambda: ["", gr.update(interactive=True), gr.update(interactive=False), gr.update(interactive=False)],
                    outputs=[prompt, prompt_gen_button, key_gen_button, i2v_end_btn])

    prompt_gen_button.click(
        fn=interrogator_process,
        inputs=[input_fg],
        outputs=[prompt]
    ).then(lambda: [gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=False)],
           outputs=[prompt_gen_button, key_gen_button, i2v_end_btn])

    key_gen_button.click(
        fn=process,
        inputs=[input_fg, prompt, input_undo_steps, image_width, image_height, seed, steps, n_prompt, cfg],
        outputs=[result_gallery]
    ).then(lambda: [gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)],
           outputs=[prompt_gen_button, key_gen_button, i2v_end_btn])

    i2v_end_btn.click(
        inputs=[result_gallery, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_fps, i2v_seed],
        outputs=[i2v_output_video, i2v_output_images],
        fn=process_video
    )

    dbs = [
        ['./imgs/1.jpg', 12345, 123],
        ['./imgs/2.jpg', 37000, 12345],
        ['./imgs/3.jpg', 3000, 3000],
    ]

    gr.Examples(
        examples=dbs,
        inputs=[input_fg, seed, i2v_seed],
        examples_per_page=1024
    )

block.queue().launch()