Spaces:
Running
Running
File size: 20,692 Bytes
f474836 2b599ab f474836 2b599ab 3220409 2b599ab 8bd5821 2b599ab f474836 0455b9a f474836 2f83249 f474836 2b599ab 2f83249 f474836 2b599ab 2f83249 f474836 2b599ab 2f83249 f474836 2b599ab f474836 2b599ab b02177f 2b599ab b02177f 2b599ab b02177f e979c00 b02177f 2b599ab b02177f 2b599ab b02177f f474836 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 |
import os
import torch
os.environ['HF_HOME'] = os.path.join(os.path.dirname(__file__), 'hf_download')
result_dir = os.path.join('./', 'results')
os.makedirs(result_dir, exist_ok=True)
is_shared_ui = True if "fffiloni/Paints-UNDO" in os.environ['SPACE_ID'] else False
is_gpu_associated = torch.cuda.is_available()
import subprocess
from subprocess import getoutput
if is_gpu_associated:
gpu_info = getoutput('nvidia-smi')
if("A10G" in gpu_info):
which_gpu = "A10G"
elif("T4" in gpu_info):
which_gpu = "T4"
else:
which_gpu = "CPU"
import functools
import random
import gradio as gr
import numpy as np
import wd14tagger
if is_gpu_associated:
import memory_management
import uuid
from PIL import Image
from diffusers_helper.code_cond import unet_add_coded_conds
from diffusers_helper.cat_cond import unet_add_concat_conds
from diffusers_helper.k_diffusion import KDiffusionSampler
from diffusers import AutoencoderKL, UNet2DConditionModel
from diffusers.models.attention_processor import AttnProcessor2_0
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers_vdm.pipeline import LatentVideoDiffusionPipeline
from diffusers_vdm.utils import resize_and_center_crop, save_bcthw_as_mp4
class ModifiedUNet(UNet2DConditionModel):
@classmethod
def from_config(cls, *args, **kwargs):
m = super().from_config(*args, **kwargs)
unet_add_concat_conds(unet=m, new_channels=4)
unet_add_coded_conds(unet=m, added_number_count=1)
return m
model_name = 'lllyasviel/paints_undo_single_frame'
tokenizer = CLIPTokenizer.from_pretrained(model_name, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(model_name, subfolder="text_encoder").to(torch.float16)
vae = AutoencoderKL.from_pretrained(model_name, subfolder="vae").to(torch.bfloat16) # bfloat16 vae
unet = ModifiedUNet.from_pretrained(model_name, subfolder="unet").to(torch.float16)
unet.set_attn_processor(AttnProcessor2_0())
vae.set_attn_processor(AttnProcessor2_0())
video_pipe = LatentVideoDiffusionPipeline.from_pretrained(
'lllyasviel/paints_undo_multi_frame',
fp16=True
)
if is_gpu_associated:
memory_management.unload_all_models([
video_pipe.unet, video_pipe.vae, video_pipe.text_encoder, video_pipe.image_projection, video_pipe.image_encoder,
unet, vae, text_encoder
])
k_sampler = KDiffusionSampler(
unet=unet,
timesteps=1000,
linear_start=0.00085,
linear_end=0.020,
linear=True
)
def find_best_bucket(h, w, options):
min_metric = float('inf')
best_bucket = None
for (bucket_h, bucket_w) in options:
metric = abs(h * bucket_w - w * bucket_h)
if metric <= min_metric:
min_metric = metric
best_bucket = (bucket_h, bucket_w)
return best_bucket
@torch.inference_mode()
def encode_cropped_prompt_77tokens(txt: str):
memory_management.load_models_to_gpu(text_encoder)
cond_ids = tokenizer(txt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt").input_ids.to(device=text_encoder.device)
text_cond = text_encoder(cond_ids, attention_mask=None).last_hidden_state
return text_cond
@torch.inference_mode()
def pytorch2numpy(imgs):
results = []
for x in imgs:
y = x.movedim(0, -1)
y = y * 127.5 + 127.5
y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8)
results.append(y)
return results
@torch.inference_mode()
def numpy2pytorch(imgs):
h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.5 - 1.0
h = h.movedim(-1, 1)
return h
def resize_without_crop(image, target_width, target_height):
pil_image = Image.fromarray(image)
resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS)
return np.array(resized_image)
@torch.inference_mode()
def interrogator_process(x):
if is_shared_ui:
raise gr.Error("This Space only works in duplicated instances")
if not is_gpu_associated:
raise gr.Error("Please associate a T4 or A10G GPU for this Space")
return wd14tagger.default_interrogator(x)
@torch.inference_mode()
def process(input_fg, prompt, input_undo_steps, image_width, image_height, seed, steps, n_prompt, cfg,
progress=gr.Progress()):
if is_shared_ui:
raise gr.Error("This Space only works in duplicated instances")
if not is_gpu_associated:
raise gr.Error("Please associate a T4 or A10G GPU for this Space")
rng = torch.Generator(device=memory_management.gpu).manual_seed(int(seed))
memory_management.load_models_to_gpu(vae)
fg = resize_and_center_crop(input_fg, image_width, image_height)
concat_conds = numpy2pytorch([fg]).to(device=vae.device, dtype=vae.dtype)
concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor
memory_management.load_models_to_gpu(text_encoder)
conds = encode_cropped_prompt_77tokens(prompt)
unconds = encode_cropped_prompt_77tokens(n_prompt)
memory_management.load_models_to_gpu(unet)
fs = torch.tensor(input_undo_steps).to(device=unet.device, dtype=torch.long)
initial_latents = torch.zeros_like(concat_conds)
concat_conds = concat_conds.to(device=unet.device, dtype=unet.dtype)
latents = k_sampler(
initial_latent=initial_latents,
strength=1.0,
num_inference_steps=steps,
guidance_scale=cfg,
batch_size=len(input_undo_steps),
generator=rng,
prompt_embeds=conds,
negative_prompt_embeds=unconds,
cross_attention_kwargs={'concat_conds': concat_conds, 'coded_conds': fs},
same_noise_in_batch=True,
progress_tqdm=functools.partial(progress.tqdm, desc='Generating Key Frames')
).to(vae.dtype) / vae.config.scaling_factor
memory_management.load_models_to_gpu(vae)
pixels = vae.decode(latents).sample
pixels = pytorch2numpy(pixels)
pixels = [fg] + pixels + [np.zeros_like(fg) + 255]
return pixels
@torch.inference_mode()
def process_video_inner(image_1, image_2, prompt, seed=123, steps=25, cfg_scale=7.5, fs=3, progress_tqdm=None):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
frames = 16
target_height, target_width = find_best_bucket(
image_1.shape[0], image_1.shape[1],
options=[(320, 512), (384, 448), (448, 384), (512, 320)]
)
image_1 = resize_and_center_crop(image_1, target_width=target_width, target_height=target_height)
image_2 = resize_and_center_crop(image_2, target_width=target_width, target_height=target_height)
input_frames = numpy2pytorch([image_1, image_2])
input_frames = input_frames.unsqueeze(0).movedim(1, 2)
memory_management.load_models_to_gpu(video_pipe.text_encoder)
positive_text_cond = video_pipe.encode_cropped_prompt_77tokens(prompt)
negative_text_cond = video_pipe.encode_cropped_prompt_77tokens("")
memory_management.load_models_to_gpu([video_pipe.image_projection, video_pipe.image_encoder])
input_frames = input_frames.to(device=video_pipe.image_encoder.device, dtype=video_pipe.image_encoder.dtype)
positive_image_cond = video_pipe.encode_clip_vision(input_frames)
positive_image_cond = video_pipe.image_projection(positive_image_cond)
negative_image_cond = video_pipe.encode_clip_vision(torch.zeros_like(input_frames))
negative_image_cond = video_pipe.image_projection(negative_image_cond)
memory_management.load_models_to_gpu([video_pipe.vae])
input_frames = input_frames.to(device=video_pipe.vae.device, dtype=video_pipe.vae.dtype)
input_frame_latents, vae_hidden_states = video_pipe.encode_latents(input_frames, return_hidden_states=True)
first_frame = input_frame_latents[:, :, 0]
last_frame = input_frame_latents[:, :, 1]
concat_cond = torch.stack([first_frame] + [torch.zeros_like(first_frame)] * (frames - 2) + [last_frame], dim=2)
memory_management.load_models_to_gpu([video_pipe.unet])
latents = video_pipe(
batch_size=1,
steps=int(steps),
guidance_scale=cfg_scale,
positive_text_cond=positive_text_cond,
negative_text_cond=negative_text_cond,
positive_image_cond=positive_image_cond,
negative_image_cond=negative_image_cond,
concat_cond=concat_cond,
fs=fs,
progress_tqdm=progress_tqdm
)
memory_management.load_models_to_gpu([video_pipe.vae])
video = video_pipe.decode_latents(latents, vae_hidden_states)
return video, image_1, image_2
@torch.inference_mode()
def process_video(keyframes, prompt, steps, cfg, fps, seed, progress=gr.Progress()):
if is_shared_ui:
raise gr.Error("This Space only works in duplicated instances")
if not is_gpu_associated:
raise gr.Error("Please associate a T4 or A10G GPU for this Space")
result_frames = []
cropped_images = []
for i, (im1, im2) in enumerate(zip(keyframes[:-1], keyframes[1:])):
im1 = np.array(Image.open(im1[0]))
im2 = np.array(Image.open(im2[0]))
frames, im1, im2 = process_video_inner(
im1, im2, prompt, seed=seed + i, steps=steps, cfg_scale=cfg, fs=3,
progress_tqdm=functools.partial(progress.tqdm, desc=f'Generating Videos ({i + 1}/{len(keyframes) - 1})')
)
result_frames.append(frames[:, :, :-1, :, :])
cropped_images.append([im1, im2])
video = torch.cat(result_frames, dim=2)
video = torch.flip(video, dims=[2])
uuid_name = str(uuid.uuid4())
output_filename = os.path.join(result_dir, uuid_name + '.mp4')
Image.fromarray(cropped_images[0][0]).save(os.path.join(result_dir, uuid_name + '.png'))
video = save_bcthw_as_mp4(video, output_filename, fps=fps)
video = [x.cpu().numpy() for x in video]
return output_filename, video
css = """
div#warning-ready {
background-color: #ecfdf5;
padding: 0 16px 16px;
margin: 20px 0;
color: #030303!important;
}
div#warning-ready > .gr-prose > h2, div#warning-ready > .gr-prose > p {
color: #057857!important;
}
div#warning-duplicate {
background-color: #ebf5ff;
padding: 0 16px 16px;
margin: 20px 0;
color: #030303!important;
}
div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p {
color: #0f4592!important;
}
div#warning-duplicate strong {
color: #0f4592;
}
p.actions {
display: flex;
align-items: center;
margin: 20px 0;
}
div#warning-duplicate .actions a {
display: inline-block;
margin-right: 10px;
}
div#warning-setgpu {
background-color: #fff4eb;
padding: 0 16px 16px;
margin: 20px 0;
color: #030303!important;
}
div#warning-setgpu > .gr-prose > h2, div#warning-setgpu > .gr-prose > p {
color: #92220f!important;
}
div#warning-setgpu a, div#warning-setgpu b {
color: #91230f;
}
div#warning-setgpu p.actions > a {
display: inline-block;
background: #1f1f23;
border-radius: 40px;
padding: 6px 24px;
color: antiquewhite;
text-decoration: none;
font-weight: 600;
font-size: 1.2em;
}
div#warning-setsleeptime {
background-color: #fff4eb;
padding: 10px 10px;
margin: 0!important;
color: #030303!important;
}
.custom-color {
color: #030303 !important;
}
"""
block = gr.Blocks(css=css).queue()
with block:
if is_shared_ui:
top_description = gr.HTML(f'''
<div class="gr-prose">
<h2 class="custom-color"><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
Attention: this Space need to be duplicated to work</h2>
<p class="main-message custom-color">
To make it work, <strong>duplicate the Space</strong> and run it on your own profile using a <strong>private</strong> GPU (T4-small or A10G-small).<br />
A T4 costs <strong>US$0.60/h</strong>.
</p>
<p class="actions custom-color">
<a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg-dark.svg" alt="Duplicate this Space" />
</a>
to start experimenting with this demo
</p>
</div>
''', elem_id="warning-duplicate")
else:
if(is_gpu_associated):
top_description = gr.HTML(f'''
<div class="gr-prose">
<h2 class="custom-color"><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
You have successfully associated a {which_gpu} GPU to the Paints UNDO Space π</h2>
<p class="custom-color">
You will be billed by the minute from when you activated the GPU until when it is turned off.
</p>
</div>
''', elem_id="warning-ready")
else:
top_description = gr.HTML(f'''
<div class="gr-prose">
<h2 class="custom-color"><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
You have successfully duplicated the Paints UNDO Space π</h2>
<p class="custom-color">There's only one step left before you can properly play with this demo: <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings" style="text-decoration: underline" target="_blank">attribute a <b>T4-small or A10G-small GPU</b> to it (via the Settings tab)</a> and run the app below.
You will be billed by the minute from when you activate the GPU until when it is turned off.</p>
<p class="actions custom-color">
<a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings">π₯ Set recommended GPU</a>
</p>
</div>
''', elem_id="warning-setgpu")
gr.Markdown('# Paints-Undo')
with gr.Accordion(label='Step 1: Upload Image and Generate Prompt', open=True):
with gr.Row():
with gr.Column():
input_fg = gr.Image(sources=['upload'], type="numpy", label="Image", height=512)
with gr.Column():
prompt_gen_button = gr.Button(value="Generate Prompt", interactive=False)
prompt = gr.Textbox(label="Output Prompt", interactive=True)
with gr.Accordion(label='Step 2: Generate Key Frames', open=True):
with gr.Row():
with gr.Column():
input_undo_steps = gr.Dropdown(label="Operation Steps", value=[400, 600, 800, 900, 950, 999],
choices=list(range(1000)), multiselect=True)
seed = gr.Slider(label='Stage 1 Seed', minimum=0, maximum=50000, step=1, value=12345)
image_width = gr.Slider(label="Image Width", minimum=256, maximum=1024, value=512, step=64)
image_height = gr.Slider(label="Image Height", minimum=256, maximum=1024, value=640, step=64)
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=50, step=1)
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=3.0, step=0.01)
n_prompt = gr.Textbox(label="Negative Prompt",
value='lowres, bad anatomy, bad hands, cropped, worst quality')
with gr.Column():
key_gen_button = gr.Button(value="Generate Key Frames", interactive=False)
result_gallery = gr.Gallery(height=512, object_fit='contain', label='Outputs', columns=4)
with gr.Accordion(label='Step 3: Generate All Videos', open=True):
with gr.Row():
with gr.Column():
i2v_input_text = gr.Text(label='Prompts', value='1girl, masterpiece, best quality')
i2v_seed = gr.Slider(label='Stage 2 Seed', minimum=0, maximum=50000, step=1, value=123)
i2v_cfg_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='CFG Scale', value=7.5,
elem_id="i2v_cfg_scale")
i2v_steps = gr.Slider(minimum=1, maximum=60, step=1, elem_id="i2v_steps",
label="Sampling steps", value=50)
i2v_fps = gr.Slider(minimum=1, maximum=30, step=1, elem_id="i2v_motion", label="FPS", value=4)
with gr.Column():
i2v_end_btn = gr.Button("Generate Video", interactive=False)
i2v_output_video = gr.Video(label="Generated Video", elem_id="output_vid", autoplay=True,
show_share_button=True, height=512)
with gr.Row():
i2v_output_images = gr.Gallery(height=512, label="Output Frames", object_fit="contain", columns=8)
input_fg.change(lambda: ["", gr.update(interactive=True), gr.update(interactive=False), gr.update(interactive=False)],
outputs=[prompt, prompt_gen_button, key_gen_button, i2v_end_btn])
prompt_gen_button.click(
fn=interrogator_process,
inputs=[input_fg],
outputs=[prompt]
).then(lambda: [gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=False)],
outputs=[prompt_gen_button, key_gen_button, i2v_end_btn])
key_gen_button.click(
fn=process,
inputs=[input_fg, prompt, input_undo_steps, image_width, image_height, seed, steps, n_prompt, cfg],
outputs=[result_gallery]
).then(lambda: [gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)],
outputs=[prompt_gen_button, key_gen_button, i2v_end_btn])
i2v_end_btn.click(
inputs=[result_gallery, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_fps, i2v_seed],
outputs=[i2v_output_video, i2v_output_images],
fn=process_video
)
dbs = [
['./imgs/1.jpg', 12345, 123],
['./imgs/2.jpg', 37000, 12345],
['./imgs/3.jpg', 3000, 3000],
]
gr.Examples(
examples=dbs,
inputs=[input_fg, seed, i2v_seed],
examples_per_page=1024
)
block.queue().launch()
|