Spaces:
Running
Running
import torch | |
from contextlib import contextmanager | |
high_vram = False | |
gpu = torch.device('cuda') | |
cpu = torch.device('cpu') | |
torch.zeros((1, 1)).to(gpu, torch.float32) | |
torch.cuda.empty_cache() | |
models_in_gpu = [] | |
def movable_bnb_model(m): | |
if hasattr(m, 'quantization_method'): | |
m.quantization_method_backup = m.quantization_method | |
del m.quantization_method | |
try: | |
yield None | |
finally: | |
if hasattr(m, 'quantization_method_backup'): | |
m.quantization_method = m.quantization_method_backup | |
del m.quantization_method_backup | |
return | |
def load_models_to_gpu(models): | |
global models_in_gpu | |
if not isinstance(models, (tuple, list)): | |
models = [models] | |
models_to_remain = [m for m in set(models) if m in models_in_gpu] | |
models_to_load = [m for m in set(models) if m not in models_in_gpu] | |
models_to_unload = [m for m in set(models_in_gpu) if m not in models_to_remain] | |
if not high_vram: | |
for m in models_to_unload: | |
with movable_bnb_model(m): | |
m.to(cpu) | |
print('Unload to CPU:', m.__class__.__name__) | |
models_in_gpu = models_to_remain | |
for m in models_to_load: | |
with movable_bnb_model(m): | |
m.to(gpu) | |
print('Load to GPU:', m.__class__.__name__) | |
models_in_gpu = list(set(models_in_gpu + models)) | |
torch.cuda.empty_cache() | |
return | |
def unload_all_models(extra_models=None): | |
global models_in_gpu | |
if extra_models is None: | |
extra_models = [] | |
if not isinstance(extra_models, (tuple, list)): | |
extra_models = [extra_models] | |
models_in_gpu = list(set(models_in_gpu + extra_models)) | |
return load_models_to_gpu([]) | |