Spaces:
Running
Running
# video VAE with many components from lots of repos | |
# collected by lvmin | |
import torch | |
import xformers.ops | |
import torch.nn as nn | |
from einops import rearrange, repeat | |
from diffusers_vdm.basics import default, exists, zero_module, conv_nd, linear, normalization | |
from diffusers_vdm.unet import Upsample, Downsample | |
from huggingface_hub import PyTorchModelHubMixin | |
def chunked_attention(q, k, v, batch_chunk=0): | |
# if batch_chunk > 0 and not torch.is_grad_enabled(): | |
# batch_size = q.size(0) | |
# chunks = [slice(i, i + batch_chunk) for i in range(0, batch_size, batch_chunk)] | |
# | |
# out_chunks = [] | |
# for chunk in chunks: | |
# q_chunk = q[chunk] | |
# k_chunk = k[chunk] | |
# v_chunk = v[chunk] | |
# | |
# out_chunk = torch.nn.functional.scaled_dot_product_attention( | |
# q_chunk, k_chunk, v_chunk, attn_mask=None | |
# ) | |
# out_chunks.append(out_chunk) | |
# | |
# out = torch.cat(out_chunks, dim=0) | |
# else: | |
# out = torch.nn.functional.scaled_dot_product_attention( | |
# q, k, v, attn_mask=None | |
# ) | |
out = xformers.ops.memory_efficient_attention(q, k, v) | |
return out | |
def nonlinearity(x): | |
return x * torch.sigmoid(x) | |
def GroupNorm(in_channels, num_groups=32): | |
return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True) | |
class DiagonalGaussianDistribution: | |
def __init__(self, parameters, deterministic=False): | |
self.parameters = parameters | |
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) | |
self.logvar = torch.clamp(self.logvar, -30.0, 20.0) | |
self.deterministic = deterministic | |
self.std = torch.exp(0.5 * self.logvar) | |
self.var = torch.exp(self.logvar) | |
if self.deterministic: | |
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device) | |
def sample(self, noise=None): | |
if noise is None: | |
noise = torch.randn(self.mean.shape) | |
x = self.mean + self.std * noise.to(device=self.parameters.device) | |
return x | |
def mode(self): | |
return self.mean | |
class EncoderDownSampleBlock(nn.Module): | |
def __init__(self, in_channels, with_conv): | |
super().__init__() | |
self.with_conv = with_conv | |
self.in_channels = in_channels | |
if self.with_conv: | |
self.conv = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=3, | |
stride=2, | |
padding=0) | |
def forward(self, x): | |
if self.with_conv: | |
pad = (0, 1, 0, 1) | |
x = torch.nn.functional.pad(x, pad, mode="constant", value=0) | |
x = self.conv(x) | |
else: | |
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) | |
return x | |
class ResnetBlock(nn.Module): | |
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, | |
dropout, temb_channels=512): | |
super().__init__() | |
self.in_channels = in_channels | |
out_channels = in_channels if out_channels is None else out_channels | |
self.out_channels = out_channels | |
self.use_conv_shortcut = conv_shortcut | |
self.norm1 = GroupNorm(in_channels) | |
self.conv1 = torch.nn.Conv2d(in_channels, | |
out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
if temb_channels > 0: | |
self.temb_proj = torch.nn.Linear(temb_channels, | |
out_channels) | |
self.norm2 = GroupNorm(out_channels) | |
self.dropout = torch.nn.Dropout(dropout) | |
self.conv2 = torch.nn.Conv2d(out_channels, | |
out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
if self.in_channels != self.out_channels: | |
if self.use_conv_shortcut: | |
self.conv_shortcut = torch.nn.Conv2d(in_channels, | |
out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
else: | |
self.nin_shortcut = torch.nn.Conv2d(in_channels, | |
out_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
def forward(self, x, temb): | |
h = x | |
h = self.norm1(h) | |
h = nonlinearity(h) | |
h = self.conv1(h) | |
if temb is not None: | |
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None] | |
h = self.norm2(h) | |
h = nonlinearity(h) | |
h = self.dropout(h) | |
h = self.conv2(h) | |
if self.in_channels != self.out_channels: | |
if self.use_conv_shortcut: | |
x = self.conv_shortcut(x) | |
else: | |
x = self.nin_shortcut(x) | |
return x + h | |
class Encoder(nn.Module): | |
def __init__(self, *, ch, out_ch, ch_mult=(1, 2, 4, 8), num_res_blocks, | |
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, | |
resolution, z_channels, double_z=True, **kwargs): | |
super().__init__() | |
self.ch = ch | |
self.temb_ch = 0 | |
self.num_resolutions = len(ch_mult) | |
self.num_res_blocks = num_res_blocks | |
self.resolution = resolution | |
self.in_channels = in_channels | |
# downsampling | |
self.conv_in = torch.nn.Conv2d(in_channels, | |
self.ch, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
curr_res = resolution | |
in_ch_mult = (1,) + tuple(ch_mult) | |
self.in_ch_mult = in_ch_mult | |
self.down = nn.ModuleList() | |
for i_level in range(self.num_resolutions): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_in = ch * in_ch_mult[i_level] | |
block_out = ch * ch_mult[i_level] | |
for i_block in range(self.num_res_blocks): | |
block.append(ResnetBlock(in_channels=block_in, | |
out_channels=block_out, | |
temb_channels=self.temb_ch, | |
dropout=dropout)) | |
block_in = block_out | |
if curr_res in attn_resolutions: | |
attn.append(Attention(block_in)) | |
down = nn.Module() | |
down.block = block | |
down.attn = attn | |
if i_level != self.num_resolutions - 1: | |
down.downsample = EncoderDownSampleBlock(block_in, resamp_with_conv) | |
curr_res = curr_res // 2 | |
self.down.append(down) | |
# middle | |
self.mid = nn.Module() | |
self.mid.block_1 = ResnetBlock(in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout) | |
self.mid.attn_1 = Attention(block_in) | |
self.mid.block_2 = ResnetBlock(in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout) | |
# end | |
self.norm_out = GroupNorm(block_in) | |
self.conv_out = torch.nn.Conv2d(block_in, | |
2 * z_channels if double_z else z_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
def forward(self, x, return_hidden_states=False): | |
# timestep embedding | |
temb = None | |
# print(f'encoder-input={x.shape}') | |
# downsampling | |
hs = [self.conv_in(x)] | |
## if we return hidden states for decoder usage, we will store them in a list | |
if return_hidden_states: | |
hidden_states = [] | |
# print(f'encoder-conv in feat={hs[0].shape}') | |
for i_level in range(self.num_resolutions): | |
for i_block in range(self.num_res_blocks): | |
h = self.down[i_level].block[i_block](hs[-1], temb) | |
# print(f'encoder-down feat={h.shape}') | |
if len(self.down[i_level].attn) > 0: | |
h = self.down[i_level].attn[i_block](h) | |
hs.append(h) | |
if return_hidden_states: | |
hidden_states.append(h) | |
if i_level != self.num_resolutions - 1: | |
# print(f'encoder-downsample (input)={hs[-1].shape}') | |
hs.append(self.down[i_level].downsample(hs[-1])) | |
# print(f'encoder-downsample (output)={hs[-1].shape}') | |
if return_hidden_states: | |
hidden_states.append(hs[0]) | |
# middle | |
h = hs[-1] | |
h = self.mid.block_1(h, temb) | |
# print(f'encoder-mid1 feat={h.shape}') | |
h = self.mid.attn_1(h) | |
h = self.mid.block_2(h, temb) | |
# print(f'encoder-mid2 feat={h.shape}') | |
# end | |
h = self.norm_out(h) | |
h = nonlinearity(h) | |
h = self.conv_out(h) | |
# print(f'end feat={h.shape}') | |
if return_hidden_states: | |
return h, hidden_states | |
else: | |
return h | |
class ConvCombiner(nn.Module): | |
def __init__(self, ch): | |
super().__init__() | |
self.conv = nn.Conv2d(ch, ch, 1, padding=0) | |
nn.init.zeros_(self.conv.weight) | |
nn.init.zeros_(self.conv.bias) | |
def forward(self, x, context): | |
## x: b c h w, context: b c 2 h w | |
b, c, l, h, w = context.shape | |
bt, c, h, w = x.shape | |
context = rearrange(context, "b c l h w -> (b l) c h w") | |
context = self.conv(context) | |
context = rearrange(context, "(b l) c h w -> b c l h w", l=l) | |
x = rearrange(x, "(b t) c h w -> b c t h w", t=bt // b) | |
x[:, :, 0] = x[:, :, 0] + context[:, :, 0] | |
x[:, :, -1] = x[:, :, -1] + context[:, :, -1] | |
x = rearrange(x, "b c t h w -> (b t) c h w") | |
return x | |
class AttentionCombiner(nn.Module): | |
def __init__( | |
self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, **kwargs | |
): | |
super().__init__() | |
inner_dim = dim_head * heads | |
context_dim = default(context_dim, query_dim) | |
self.heads = heads | |
self.dim_head = dim_head | |
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) | |
self.to_k = nn.Linear(context_dim, inner_dim, bias=False) | |
self.to_v = nn.Linear(context_dim, inner_dim, bias=False) | |
self.to_out = nn.Sequential( | |
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) | |
) | |
self.attention_op = None | |
self.norm = GroupNorm(query_dim) | |
nn.init.zeros_(self.to_out[0].weight) | |
nn.init.zeros_(self.to_out[0].bias) | |
def forward( | |
self, | |
x, | |
context=None, | |
mask=None, | |
): | |
bt, c, h, w = x.shape | |
h_ = self.norm(x) | |
h_ = rearrange(h_, "b c h w -> b (h w) c") | |
q = self.to_q(h_) | |
b, c, l, h, w = context.shape | |
context = rearrange(context, "b c l h w -> (b l) (h w) c") | |
k = self.to_k(context) | |
v = self.to_v(context) | |
t = bt // b | |
k = repeat(k, "(b l) d c -> (b t) (l d) c", l=l, t=t) | |
v = repeat(v, "(b l) d c -> (b t) (l d) c", l=l, t=t) | |
b, _, _ = q.shape | |
q, k, v = map( | |
lambda t: t.unsqueeze(3) | |
.reshape(b, t.shape[1], self.heads, self.dim_head) | |
.permute(0, 2, 1, 3) | |
.reshape(b * self.heads, t.shape[1], self.dim_head) | |
.contiguous(), | |
(q, k, v), | |
) | |
out = chunked_attention( | |
q, k, v, batch_chunk=1 | |
) | |
if exists(mask): | |
raise NotImplementedError | |
out = ( | |
out.unsqueeze(0) | |
.reshape(b, self.heads, out.shape[1], self.dim_head) | |
.permute(0, 2, 1, 3) | |
.reshape(b, out.shape[1], self.heads * self.dim_head) | |
) | |
out = self.to_out(out) | |
out = rearrange(out, "bt (h w) c -> bt c h w", h=h, w=w, c=c) | |
return x + out | |
class Attention(nn.Module): | |
def __init__(self, in_channels): | |
super().__init__() | |
self.in_channels = in_channels | |
self.norm = GroupNorm(in_channels) | |
self.q = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.k = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.v = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.proj_out = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
def attention(self, h_: torch.Tensor) -> torch.Tensor: | |
h_ = self.norm(h_) | |
q = self.q(h_) | |
k = self.k(h_) | |
v = self.v(h_) | |
# compute attention | |
B, C, H, W = q.shape | |
q, k, v = map(lambda x: rearrange(x, "b c h w -> b (h w) c"), (q, k, v)) | |
q, k, v = map( | |
lambda t: t.unsqueeze(3) | |
.reshape(B, t.shape[1], 1, C) | |
.permute(0, 2, 1, 3) | |
.reshape(B * 1, t.shape[1], C) | |
.contiguous(), | |
(q, k, v), | |
) | |
out = chunked_attention( | |
q, k, v, batch_chunk=1 | |
) | |
out = ( | |
out.unsqueeze(0) | |
.reshape(B, 1, out.shape[1], C) | |
.permute(0, 2, 1, 3) | |
.reshape(B, out.shape[1], C) | |
) | |
return rearrange(out, "b (h w) c -> b c h w", b=B, h=H, w=W, c=C) | |
def forward(self, x, **kwargs): | |
h_ = x | |
h_ = self.attention(h_) | |
h_ = self.proj_out(h_) | |
return x + h_ | |
class VideoDecoder(nn.Module): | |
def __init__( | |
self, | |
*, | |
ch, | |
out_ch, | |
ch_mult=(1, 2, 4, 8), | |
num_res_blocks, | |
attn_resolutions, | |
dropout=0.0, | |
resamp_with_conv=True, | |
in_channels, | |
resolution, | |
z_channels, | |
give_pre_end=False, | |
tanh_out=False, | |
use_linear_attn=False, | |
attn_level=[2, 3], | |
video_kernel_size=[3, 1, 1], | |
alpha: float = 0.0, | |
merge_strategy: str = "learned", | |
**kwargs, | |
): | |
super().__init__() | |
self.video_kernel_size = video_kernel_size | |
self.alpha = alpha | |
self.merge_strategy = merge_strategy | |
self.ch = ch | |
self.temb_ch = 0 | |
self.num_resolutions = len(ch_mult) | |
self.num_res_blocks = num_res_blocks | |
self.resolution = resolution | |
self.in_channels = in_channels | |
self.give_pre_end = give_pre_end | |
self.tanh_out = tanh_out | |
self.attn_level = attn_level | |
# compute in_ch_mult, block_in and curr_res at lowest res | |
in_ch_mult = (1,) + tuple(ch_mult) | |
block_in = ch * ch_mult[self.num_resolutions - 1] | |
curr_res = resolution // 2 ** (self.num_resolutions - 1) | |
self.z_shape = (1, z_channels, curr_res, curr_res) | |
# z to block_in | |
self.conv_in = torch.nn.Conv2d( | |
z_channels, block_in, kernel_size=3, stride=1, padding=1 | |
) | |
# middle | |
self.mid = nn.Module() | |
self.mid.block_1 = VideoResBlock( | |
in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
video_kernel_size=self.video_kernel_size, | |
alpha=self.alpha, | |
merge_strategy=self.merge_strategy, | |
) | |
self.mid.attn_1 = Attention(block_in) | |
self.mid.block_2 = VideoResBlock( | |
in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
video_kernel_size=self.video_kernel_size, | |
alpha=self.alpha, | |
merge_strategy=self.merge_strategy, | |
) | |
# upsampling | |
self.up = nn.ModuleList() | |
self.attn_refinement = nn.ModuleList() | |
for i_level in reversed(range(self.num_resolutions)): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_out = ch * ch_mult[i_level] | |
for i_block in range(self.num_res_blocks + 1): | |
block.append( | |
VideoResBlock( | |
in_channels=block_in, | |
out_channels=block_out, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
video_kernel_size=self.video_kernel_size, | |
alpha=self.alpha, | |
merge_strategy=self.merge_strategy, | |
) | |
) | |
block_in = block_out | |
if curr_res in attn_resolutions: | |
attn.append(Attention(block_in)) | |
up = nn.Module() | |
up.block = block | |
up.attn = attn | |
if i_level != 0: | |
up.upsample = Upsample(block_in, resamp_with_conv) | |
curr_res = curr_res * 2 | |
self.up.insert(0, up) # prepend to get consistent order | |
if i_level in self.attn_level: | |
self.attn_refinement.insert(0, AttentionCombiner(block_in)) | |
else: | |
self.attn_refinement.insert(0, ConvCombiner(block_in)) | |
# end | |
self.norm_out = GroupNorm(block_in) | |
self.attn_refinement.append(ConvCombiner(block_in)) | |
self.conv_out = DecoderConv3D( | |
block_in, out_ch, kernel_size=3, stride=1, padding=1, video_kernel_size=self.video_kernel_size | |
) | |
def forward(self, z, ref_context=None, **kwargs): | |
## ref_context: b c 2 h w, 2 means starting and ending frame | |
# assert z.shape[1:] == self.z_shape[1:] | |
self.last_z_shape = z.shape | |
# timestep embedding | |
temb = None | |
# z to block_in | |
h = self.conv_in(z) | |
# middle | |
h = self.mid.block_1(h, temb, **kwargs) | |
h = self.mid.attn_1(h, **kwargs) | |
h = self.mid.block_2(h, temb, **kwargs) | |
# upsampling | |
for i_level in reversed(range(self.num_resolutions)): | |
for i_block in range(self.num_res_blocks + 1): | |
h = self.up[i_level].block[i_block](h, temb, **kwargs) | |
if len(self.up[i_level].attn) > 0: | |
h = self.up[i_level].attn[i_block](h, **kwargs) | |
if ref_context: | |
h = self.attn_refinement[i_level](x=h, context=ref_context[i_level]) | |
if i_level != 0: | |
h = self.up[i_level].upsample(h) | |
# end | |
if self.give_pre_end: | |
return h | |
h = self.norm_out(h) | |
h = nonlinearity(h) | |
if ref_context: | |
# print(h.shape, ref_context[i_level].shape) #torch.Size([8, 128, 256, 256]) torch.Size([1, 128, 2, 256, 256]) | |
h = self.attn_refinement[-1](x=h, context=ref_context[-1]) | |
h = self.conv_out(h, **kwargs) | |
if self.tanh_out: | |
h = torch.tanh(h) | |
return h | |
class TimeStackBlock(torch.nn.Module): | |
def __init__( | |
self, | |
channels: int, | |
emb_channels: int, | |
dropout: float, | |
out_channels: int = None, | |
use_conv: bool = False, | |
use_scale_shift_norm: bool = False, | |
dims: int = 2, | |
use_checkpoint: bool = False, | |
up: bool = False, | |
down: bool = False, | |
kernel_size: int = 3, | |
exchange_temb_dims: bool = False, | |
skip_t_emb: bool = False, | |
): | |
super().__init__() | |
self.channels = channels | |
self.emb_channels = emb_channels | |
self.dropout = dropout | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.use_checkpoint = use_checkpoint | |
self.use_scale_shift_norm = use_scale_shift_norm | |
self.exchange_temb_dims = exchange_temb_dims | |
if isinstance(kernel_size, list): | |
padding = [k // 2 for k in kernel_size] | |
else: | |
padding = kernel_size // 2 | |
self.in_layers = nn.Sequential( | |
normalization(channels), | |
nn.SiLU(), | |
conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding), | |
) | |
self.updown = up or down | |
if up: | |
self.h_upd = Upsample(channels, False, dims) | |
self.x_upd = Upsample(channels, False, dims) | |
elif down: | |
self.h_upd = Downsample(channels, False, dims) | |
self.x_upd = Downsample(channels, False, dims) | |
else: | |
self.h_upd = self.x_upd = nn.Identity() | |
self.skip_t_emb = skip_t_emb | |
self.emb_out_channels = ( | |
2 * self.out_channels if use_scale_shift_norm else self.out_channels | |
) | |
if self.skip_t_emb: | |
# print(f"Skipping timestep embedding in {self.__class__.__name__}") | |
assert not self.use_scale_shift_norm | |
self.emb_layers = None | |
self.exchange_temb_dims = False | |
else: | |
self.emb_layers = nn.Sequential( | |
nn.SiLU(), | |
linear( | |
emb_channels, | |
self.emb_out_channels, | |
), | |
) | |
self.out_layers = nn.Sequential( | |
normalization(self.out_channels), | |
nn.SiLU(), | |
nn.Dropout(p=dropout), | |
zero_module( | |
conv_nd( | |
dims, | |
self.out_channels, | |
self.out_channels, | |
kernel_size, | |
padding=padding, | |
) | |
), | |
) | |
if self.out_channels == channels: | |
self.skip_connection = nn.Identity() | |
elif use_conv: | |
self.skip_connection = conv_nd( | |
dims, channels, self.out_channels, kernel_size, padding=padding | |
) | |
else: | |
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) | |
def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor: | |
if self.updown: | |
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] | |
h = in_rest(x) | |
h = self.h_upd(h) | |
x = self.x_upd(x) | |
h = in_conv(h) | |
else: | |
h = self.in_layers(x) | |
if self.skip_t_emb: | |
emb_out = torch.zeros_like(h) | |
else: | |
emb_out = self.emb_layers(emb).type(h.dtype) | |
while len(emb_out.shape) < len(h.shape): | |
emb_out = emb_out[..., None] | |
if self.use_scale_shift_norm: | |
out_norm, out_rest = self.out_layers[0], self.out_layers[1:] | |
scale, shift = torch.chunk(emb_out, 2, dim=1) | |
h = out_norm(h) * (1 + scale) + shift | |
h = out_rest(h) | |
else: | |
if self.exchange_temb_dims: | |
emb_out = rearrange(emb_out, "b t c ... -> b c t ...") | |
h = h + emb_out | |
h = self.out_layers(h) | |
return self.skip_connection(x) + h | |
class VideoResBlock(ResnetBlock): | |
def __init__( | |
self, | |
out_channels, | |
*args, | |
dropout=0.0, | |
video_kernel_size=3, | |
alpha=0.0, | |
merge_strategy="learned", | |
**kwargs, | |
): | |
super().__init__(out_channels=out_channels, dropout=dropout, *args, **kwargs) | |
if video_kernel_size is None: | |
video_kernel_size = [3, 1, 1] | |
self.time_stack = TimeStackBlock( | |
channels=out_channels, | |
emb_channels=0, | |
dropout=dropout, | |
dims=3, | |
use_scale_shift_norm=False, | |
use_conv=False, | |
up=False, | |
down=False, | |
kernel_size=video_kernel_size, | |
use_checkpoint=True, | |
skip_t_emb=True, | |
) | |
self.merge_strategy = merge_strategy | |
if self.merge_strategy == "fixed": | |
self.register_buffer("mix_factor", torch.Tensor([alpha])) | |
elif self.merge_strategy == "learned": | |
self.register_parameter( | |
"mix_factor", torch.nn.Parameter(torch.Tensor([alpha])) | |
) | |
else: | |
raise ValueError(f"unknown merge strategy {self.merge_strategy}") | |
def get_alpha(self, bs): | |
if self.merge_strategy == "fixed": | |
return self.mix_factor | |
elif self.merge_strategy == "learned": | |
return torch.sigmoid(self.mix_factor) | |
else: | |
raise NotImplementedError() | |
def forward(self, x, temb, skip_video=False, timesteps=None): | |
assert isinstance(timesteps, int) | |
b, c, h, w = x.shape | |
x = super().forward(x, temb) | |
if not skip_video: | |
x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps) | |
x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps) | |
x = self.time_stack(x, temb) | |
alpha = self.get_alpha(bs=b // timesteps) | |
x = alpha * x + (1.0 - alpha) * x_mix | |
x = rearrange(x, "b c t h w -> (b t) c h w") | |
return x | |
class DecoderConv3D(torch.nn.Conv2d): | |
def __init__(self, in_channels, out_channels, video_kernel_size=3, *args, **kwargs): | |
super().__init__(in_channels, out_channels, *args, **kwargs) | |
if isinstance(video_kernel_size, list): | |
padding = [int(k // 2) for k in video_kernel_size] | |
else: | |
padding = int(video_kernel_size // 2) | |
self.time_mix_conv = torch.nn.Conv3d( | |
in_channels=out_channels, | |
out_channels=out_channels, | |
kernel_size=video_kernel_size, | |
padding=padding, | |
) | |
def forward(self, input, timesteps, skip_video=False): | |
x = super().forward(input) | |
if skip_video: | |
return x | |
x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps) | |
x = self.time_mix_conv(x) | |
return rearrange(x, "b c t h w -> (b t) c h w") | |
class VideoAutoencoderKL(torch.nn.Module, PyTorchModelHubMixin): | |
def __init__(self, | |
double_z=True, | |
z_channels=4, | |
resolution=256, | |
in_channels=3, | |
out_ch=3, | |
ch=128, | |
ch_mult=[], | |
num_res_blocks=2, | |
attn_resolutions=[], | |
dropout=0.0, | |
): | |
super().__init__() | |
self.encoder = Encoder(double_z=double_z, z_channels=z_channels, resolution=resolution, in_channels=in_channels, | |
out_ch=out_ch, ch=ch, ch_mult=ch_mult, num_res_blocks=num_res_blocks, | |
attn_resolutions=attn_resolutions, dropout=dropout) | |
self.decoder = VideoDecoder(double_z=double_z, z_channels=z_channels, resolution=resolution, | |
in_channels=in_channels, out_ch=out_ch, ch=ch, ch_mult=ch_mult, | |
num_res_blocks=num_res_blocks, attn_resolutions=attn_resolutions, dropout=dropout) | |
self.quant_conv = torch.nn.Conv2d(2 * z_channels, 2 * z_channels, 1) | |
self.post_quant_conv = torch.nn.Conv2d(z_channels, z_channels, 1) | |
self.scale_factor = 0.18215 | |
def encode(self, x, return_hidden_states=False, **kwargs): | |
if return_hidden_states: | |
h, hidden = self.encoder(x, return_hidden_states) | |
moments = self.quant_conv(h) | |
posterior = DiagonalGaussianDistribution(moments) | |
return posterior, hidden | |
else: | |
h = self.encoder(x) | |
moments = self.quant_conv(h) | |
posterior = DiagonalGaussianDistribution(moments) | |
return posterior, None | |
def decode(self, z, **kwargs): | |
if len(kwargs) == 0: | |
z = self.post_quant_conv(z) | |
dec = self.decoder(z, **kwargs) | |
return dec | |
def device(self): | |
return next(self.parameters()).device | |
def dtype(self): | |
return next(self.parameters()).dtype | |