File size: 7,105 Bytes
e54e757
2943808
 
 
 
 
e54e757
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2943808
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e54e757
 
 
 
4250afc
e54e757
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d03b8b
2943808
 
4250afc
2943808
 
 
 
 
 
 
 
3433893
6d03b8b
2943808
 
 
 
 
 
 
 
 
 
 
7913792
6c0195c
1c5960f
2943808
 
 
 
4250afc
2943808
 
 
 
 
00cdda2
2943808
00cdda2
2943808
 
 
 
 
 
 
 
 
e54e757
 
 
2943808
e54e757
2943808
e54e757
 
 
 
 
 
 
 
 
 
2943808
 
 
 
e54e757
6d03b8b
e54e757
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32d058f
e54e757
 
 
 
 
 
3433893
e54e757
 
 
6d03b8b
e54e757
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
from PIL import Image
import os
import cv2
import numpy as np
from PIL import Image
from moviepy.editor import *
import gradio as gr
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
import torch
torch.backends.cuda.matmul.allow_tf32 = True
import gc

controlnet = ControlNetModel.from_pretrained("ioclab/control_v1p_sd15_brightness", torch_dtype=torch.float16, use_safetensors=True)

pipe = StableDiffusionControlNetPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5",
    controlnet=controlnet,
    torch_dtype=torch.float16,
    safety_checker=None,
)

pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)

pipe.enable_xformers_memory_efficient_attention()
pipe.enable_model_cpu_offload()
pipe.enable_attention_slicing()

def get_frames(video_in):
    frames = []
    #resize the video
    clip = VideoFileClip(video_in)
    
    #check fps
    if clip.fps > 30:
        print("vide rate is over 30, resetting to 30")
        clip_resized = clip.resize(height=512)
        clip_resized.write_videofile("video_resized.mp4", fps=30)
    else:
        print("video rate is OK")
        clip_resized = clip.resize(height=512)
        clip_resized.write_videofile("video_resized.mp4", fps=clip.fps)
    
    print("video resized to 512 height")
    
    # Opens the Video file with CV2
    cap= cv2.VideoCapture("video_resized.mp4")
    
    fps = cap.get(cv2.CAP_PROP_FPS)
    print("video fps: " + str(fps))
    i=0
    while(cap.isOpened()):
        ret, frame = cap.read()
        if ret == False:
            break
        cv2.imwrite('kang'+str(i)+'.jpg',frame)
        frames.append('kang'+str(i)+'.jpg')
        i+=1
    
    cap.release()
    cv2.destroyAllWindows()
    print("broke the video into frames")
    
    return frames, fps

def create_video(frames, fps):
    print("building video result")
    clip = ImageSequenceClip(frames, fps=fps)
    clip.write_videofile("_result.mp4", fps=fps)
    
    return "_result.mp4"

def process_brightness(
        prompt,
        negative_prompt,
        conditioning_image,
        num_inference_steps=30,
        size=512,
        guidance_scale=7.0,
        seed=1234,
):

    conditioning_image_raw = Image.fromarray(conditioning_image)
    conditioning_image = conditioning_image_raw.convert('L')

    g_cpu = torch.Generator()

    if seed == -1:
        generator = g_cpu.manual_seed(g_cpu.seed())
    else:
        generator = g_cpu.manual_seed(seed)

    output_image = pipe(
        prompt,
        conditioning_image,
        height=size,
        width=size,
        num_inference_steps=num_inference_steps,
        generator=generator,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        controlnet_conditioning_scale=1.0,
    ).images[0]

    del conditioning_image, conditioning_image_raw
    gc.collect()

    return output_image

def infer(video_in, trim_value, prompt,
                    negative_prompt,
                    num_inference_steps=30,
                    size=512,
                    guidance_scale=7.0,
                    seed=1234
         ):
    
    # 1. break video into frames and get FPS
    break_vid = get_frames(video_in)
    frames_list= break_vid[0]
    fps = break_vid[1]
    n_frame = int(trim_value * fps)
    #n_frame = len(frames_list)
    
    if n_frame >= len(frames_list):
        print("video is shorter than the cut value")
        n_frame = len(frames_list)
    
    # 2. prepare frames result arrays
    result_frames = []
    print("set stop frames to: " + str(n_frame))
    
    for i, image in enumerate(frames_list[0:int(n_frame)]):

        conditioning_image = Image.open(image).convert("RGB")
        conditioning_image = np.array(conditioning_image)
        output_frame = process_brightness(
                            prompt,
                            negative_prompt,
                            conditioning_image,
                            num_inference_steps=30,
                            size=512,
                            guidance_scale=7.0,
                            seed=1234
                           )
        print(output_frame)
        
        #image = Image.open(output_frame)
        #image = Image.fromarray(output_frame[0])
        output_frame.save("_frame_" + str(i) + ".jpeg")
        result_frames.append("_frame_" + str(i) + ".jpeg")
        print("frame " + str(i) + "/" + str(n_frame) + ": done;")

    
    final_vid = create_video(result_frames, fps)

    
    return final_vid

with gr.Blocks() as demo:
    gr.Markdown(
        """
    # ControlNet on Brightness • Video

    This is a demo on ControlNet based on brightness for video.
    """)

    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox(
                label="Prompt",
            )
            negative_prompt = gr.Textbox(
                label="Negative Prompt",
            )
            video_in = gr.Video(
                label="Conditioning Video",
                source="upload",
                type="filepath"     
            )
            trim_in = gr.Slider(label="Cut video at (s)", minimun=1, maximum=5, step=1, value=1)
            with gr.Accordion('Advanced options', open=False):
                with gr.Row():
                    num_inference_steps = gr.Slider(
                        10, 40, 20,
                        step=1,
                        label="Steps",
                    )
                    size = gr.Slider(
                        256, 768, 512,
                        step=128,
                        label="Size",
                    )
                with gr.Row():
                    guidance_scale = gr.Slider(
                        label='Guidance Scale',
                        minimum=0.1,
                        maximum=30.0,
                        value=7.0,
                        step=0.1
                    )
                    seed = gr.Slider(
                        label='Seed',
                        value=-1,
                        minimum=-1,
                        maximum=2147483647,
                        step=1,
                        # randomize=True
                    )
            submit_btn = gr.Button(
                value="Submit",
                variant="primary"
            )
        with gr.Column(min_width=300):
            output = gr.Video(
                label="Result",
            )

    submit_btn.click(
        fn=infer,
        inputs=[
            video_in, trim_in, prompt, negative_prompt, num_inference_steps, size, guidance_scale, seed
        ],
        outputs=output
    )
    
    gr.Markdown(
        """
    * [Dataset](https://huggingface.co/datasets/ioclab/grayscale_image_aesthetic_3M)
    * [Diffusers model](https://huggingface.co/ioclab/control_v1p_sd15_brightness), [Web UI model](https://huggingface.co/ioclab/ioc-controlnet)
    * [Training Report](https://api.wandb.ai/links/ciaochaos/oot5cui2), [Doc(Chinese)](https://aigc.ioclab.com/sd-showcase/brightness-controlnet.html)
    """)

demo.launch()