Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,277 +1,355 @@
|
|
1 |
-
import os
|
2 |
-
import random
|
3 |
-
from pathlib import Path
|
4 |
-
import numpy as np
|
5 |
-
import torch
|
6 |
-
from diffusers import AutoencoderKL, DDIMScheduler
|
7 |
-
from PIL import Image
|
8 |
-
from src.models.unet_2d_condition import UNet2DConditionModel
|
9 |
-
from src.models.unet_3d_emo import EMOUNet3DConditionModel
|
10 |
-
from src.models.whisper.audio2feature import load_audio_model
|
11 |
-
from src.pipelines.pipeline_echomimicv2 import EchoMimicV2Pipeline
|
12 |
-
from src.utils.util import save_videos_grid
|
13 |
-
from src.models.pose_encoder import PoseEncoder
|
14 |
-
from src.utils.dwpose_util import draw_pose_select_v2
|
15 |
-
from moviepy.editor import VideoFileClip, AudioFileClip
|
16 |
-
|
17 |
-
import gradio as gr
|
18 |
-
from datetime import datetime
|
19 |
-
from torchao.quantization import quantize_, int8_weight_only
|
20 |
-
import gc
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
)
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
from pathlib import Path
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from diffusers import AutoencoderKL, DDIMScheduler
|
7 |
+
from PIL import Image
|
8 |
+
from src.models.unet_2d_condition import UNet2DConditionModel
|
9 |
+
from src.models.unet_3d_emo import EMOUNet3DConditionModel
|
10 |
+
from src.models.whisper.audio2feature import load_audio_model
|
11 |
+
from src.pipelines.pipeline_echomimicv2 import EchoMimicV2Pipeline
|
12 |
+
from src.utils.util import save_videos_grid
|
13 |
+
from src.models.pose_encoder import PoseEncoder
|
14 |
+
from src.utils.dwpose_util import draw_pose_select_v2
|
15 |
+
from moviepy.editor import VideoFileClip, AudioFileClip
|
16 |
+
|
17 |
+
import gradio as gr
|
18 |
+
from datetime import datetime
|
19 |
+
from torchao.quantization import quantize_, int8_weight_only
|
20 |
+
import gc
|
21 |
+
|
22 |
+
import requests
|
23 |
+
import tarfile
|
24 |
+
|
25 |
+
def download_and_setup_ffmpeg():
|
26 |
+
url = "https://www.johnvansickle.com/ffmpeg/old-releases/ffmpeg-4.4-amd64-static.tar.xz"
|
27 |
+
download_path = "ffmpeg-4.4-amd64-static.tar.xz"
|
28 |
+
extract_dir = "ffmpeg-4.4-amd64-static"
|
29 |
+
|
30 |
+
try:
|
31 |
+
# Download the file
|
32 |
+
response = requests.get(url, stream=True)
|
33 |
+
response.raise_for_status() # Check for HTTP request errors
|
34 |
+
with open(download_path, "wb") as file:
|
35 |
+
for chunk in response.iter_content(chunk_size=8192):
|
36 |
+
file.write(chunk)
|
37 |
+
|
38 |
+
# Extract the tar.xz file
|
39 |
+
with tarfile.open(download_path, "r:xz") as tar:
|
40 |
+
tar.extractall(path=extract_dir)
|
41 |
+
|
42 |
+
# Set the FFMPEG_PATH environment variable
|
43 |
+
ffmpeg_binary_path = os.path.join(extract_dir, "ffmpeg-4.4-amd64-static", "ffmpeg")
|
44 |
+
os.environ["FFMPEG_PATH"] = ffmpeg_binary_path
|
45 |
+
|
46 |
+
return f"FFmpeg downloaded and setup successfully! Path: {ffmpeg_binary_path}"
|
47 |
+
except Exception as e:
|
48 |
+
return f"An error occurred: {str(e)}"
|
49 |
+
|
50 |
+
download_and_setup_ffmpeg()
|
51 |
+
|
52 |
+
from huggingface_hub import snapshot_download
|
53 |
+
|
54 |
+
# Create the main "pretrained_weights" folder
|
55 |
+
os.makedirs("pretrained_weights", exist_ok=True)
|
56 |
+
|
57 |
+
# List of subdirectories to create inside "pretrained_weights"
|
58 |
+
subfolders = [
|
59 |
+
"sd-vae-ft-mse",
|
60 |
+
"sd-image-variations-diffusers",
|
61 |
+
"audio_processor"
|
62 |
+
]
|
63 |
+
|
64 |
+
# Create each subdirectory
|
65 |
+
for subfolder in subfolders:
|
66 |
+
os.makedirs(os.path.join("pretrained_weights", subfolder), exist_ok=True)
|
67 |
+
|
68 |
+
snapshot_download(
|
69 |
+
repo_id = "BadToBest/EchoMimicV2",
|
70 |
+
local_dir="./pretrained_weights"
|
71 |
+
)
|
72 |
+
snapshot_download(
|
73 |
+
repo_id = "stabilityai/sd-vae-ft-mse",
|
74 |
+
local_dir="./pretrained_weights/sd-vae-ft-mse"
|
75 |
+
)
|
76 |
+
snapshot_download(
|
77 |
+
repo_id = "lambdalabs/sd-image-variations-diffusers",
|
78 |
+
local_dir="./pretrained_weights/sd-image-variations-diffusers"
|
79 |
+
)
|
80 |
+
|
81 |
+
# Download and place the Whisper model in the "audio_processor" folder
|
82 |
+
def download_whisper_model():
|
83 |
+
url = "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt"
|
84 |
+
save_path = os.path.join("pretrained_weights", "audio_processor", "tiny.pt")
|
85 |
+
|
86 |
+
try:
|
87 |
+
# Download the file
|
88 |
+
response = requests.get(url, stream=True)
|
89 |
+
response.raise_for_status() # Check for HTTP request errors
|
90 |
+
with open(save_path, "wb") as file:
|
91 |
+
for chunk in response.iter_content(chunk_size=8192):
|
92 |
+
file.write(chunk)
|
93 |
+
print(f"Whisper model downloaded and saved to {save_path}")
|
94 |
+
except Exception as e:
|
95 |
+
print(f"An error occurred while downloading the model: {str(e)}")
|
96 |
+
|
97 |
+
# Download the Whisper model
|
98 |
+
download_whisper_model()
|
99 |
+
|
100 |
+
total_vram_in_gb = torch.cuda.get_device_properties(0).total_memory / 1073741824
|
101 |
+
print(f'\033[32mCUDA版本:{torch.version.cuda}\033[0m')
|
102 |
+
print(f'\033[32mPytorch版本:{torch.__version__}\033[0m')
|
103 |
+
print(f'\033[32m显卡型号:{torch.cuda.get_device_name()}\033[0m')
|
104 |
+
print(f'\033[32m显存大小:{total_vram_in_gb:.2f}GB\033[0m')
|
105 |
+
print(f'\033[32m精度:float16\033[0m')
|
106 |
+
dtype = torch.float16
|
107 |
+
if torch.cuda.is_available():
|
108 |
+
device = "cuda"
|
109 |
+
else:
|
110 |
+
print("cuda not available, using cpu")
|
111 |
+
device = "cpu"
|
112 |
+
|
113 |
+
ffmpeg_path = os.getenv('FFMPEG_PATH')
|
114 |
+
if ffmpeg_path is None:
|
115 |
+
print("please download ffmpeg-static and export to FFMPEG_PATH. \nFor example: export FFMPEG_PATH=./ffmpeg-4.4-amd64-static")
|
116 |
+
elif ffmpeg_path not in os.getenv('PATH'):
|
117 |
+
print("add ffmpeg to path")
|
118 |
+
os.environ["PATH"] = f"{ffmpeg_path}:{os.environ['PATH']}"
|
119 |
+
|
120 |
+
|
121 |
+
def generate(image_input, audio_input, pose_input, width, height, length, steps, sample_rate, cfg, fps, context_frames, context_overlap, quantization_input, seed):
|
122 |
+
gc.collect()
|
123 |
+
torch.cuda.empty_cache()
|
124 |
+
torch.cuda.ipc_collect()
|
125 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
126 |
+
save_dir = Path("outputs")
|
127 |
+
save_dir.mkdir(exist_ok=True, parents=True)
|
128 |
+
|
129 |
+
############# model_init started #############
|
130 |
+
## vae init
|
131 |
+
vae = AutoencoderKL.from_pretrained("./pretrained_weights/sd-vae-ft-mse").to(device, dtype=dtype)
|
132 |
+
if quantization_input:
|
133 |
+
quantize_(vae, int8_weight_only())
|
134 |
+
print("使用int8量化")
|
135 |
+
|
136 |
+
## reference net init
|
137 |
+
reference_unet = UNet2DConditionModel.from_pretrained("./pretrained_weights/sd-image-variations-diffusers", subfolder="unet", use_safetensors=False).to(dtype=dtype, device=device)
|
138 |
+
reference_unet.load_state_dict(torch.load("./pretrained_weights/reference_unet.pth", weights_only=True))
|
139 |
+
if quantization_input:
|
140 |
+
quantize_(reference_unet, int8_weight_only())
|
141 |
+
|
142 |
+
## denoising net init
|
143 |
+
if os.path.exists("./pretrained_weights/motion_module.pth"):
|
144 |
+
print('using motion module')
|
145 |
+
else:
|
146 |
+
exit("motion module not found")
|
147 |
+
### stage1 + stage2
|
148 |
+
denoising_unet = EMOUNet3DConditionModel.from_pretrained_2d(
|
149 |
+
"./pretrained_weights/sd-image-variations-diffusers",
|
150 |
+
"./pretrained_weights/motion_module.pth",
|
151 |
+
subfolder="unet",
|
152 |
+
unet_additional_kwargs = {
|
153 |
+
"use_inflated_groupnorm": True,
|
154 |
+
"unet_use_cross_frame_attention": False,
|
155 |
+
"unet_use_temporal_attention": False,
|
156 |
+
"use_motion_module": True,
|
157 |
+
"cross_attention_dim": 384,
|
158 |
+
"motion_module_resolutions": [
|
159 |
+
1,
|
160 |
+
2,
|
161 |
+
4,
|
162 |
+
8
|
163 |
+
],
|
164 |
+
"motion_module_mid_block": True ,
|
165 |
+
"motion_module_decoder_only": False,
|
166 |
+
"motion_module_type": "Vanilla",
|
167 |
+
"motion_module_kwargs":{
|
168 |
+
"num_attention_heads": 8,
|
169 |
+
"num_transformer_block": 1,
|
170 |
+
"attention_block_types": [
|
171 |
+
'Temporal_Self',
|
172 |
+
'Temporal_Self'
|
173 |
+
],
|
174 |
+
"temporal_position_encoding": True,
|
175 |
+
"temporal_position_encoding_max_len": 32,
|
176 |
+
"temporal_attention_dim_div": 1,
|
177 |
+
}
|
178 |
+
},
|
179 |
+
).to(dtype=dtype, device=device)
|
180 |
+
denoising_unet.load_state_dict(torch.load("./pretrained_weights/denoising_unet.pth", weights_only=True),strict=False)
|
181 |
+
|
182 |
+
# pose net init
|
183 |
+
pose_net = PoseEncoder(320, conditioning_channels=3, block_out_channels=(16, 32, 96, 256)).to(dtype=dtype, device=device)
|
184 |
+
pose_net.load_state_dict(torch.load("./pretrained_weights/pose_encoder.pth", weights_only=True))
|
185 |
+
|
186 |
+
### load audio processor params
|
187 |
+
audio_processor = load_audio_model(model_path="./pretrained_weights/audio_processor/tiny.pt", device=device)
|
188 |
+
|
189 |
+
############# model_init finished #############
|
190 |
+
sched_kwargs = {
|
191 |
+
"beta_start": 0.00085,
|
192 |
+
"beta_end": 0.012,
|
193 |
+
"beta_schedule": "linear",
|
194 |
+
"clip_sample": False,
|
195 |
+
"steps_offset": 1,
|
196 |
+
"prediction_type": "v_prediction",
|
197 |
+
"rescale_betas_zero_snr": True,
|
198 |
+
"timestep_spacing": "trailing"
|
199 |
+
}
|
200 |
+
scheduler = DDIMScheduler(**sched_kwargs)
|
201 |
+
|
202 |
+
pipe = EchoMimicV2Pipeline(
|
203 |
+
vae=vae,
|
204 |
+
reference_unet=reference_unet,
|
205 |
+
denoising_unet=denoising_unet,
|
206 |
+
audio_guider=audio_processor,
|
207 |
+
pose_encoder=pose_net,
|
208 |
+
scheduler=scheduler,
|
209 |
+
)
|
210 |
+
|
211 |
+
pipe = pipe.to(device, dtype=dtype)
|
212 |
+
|
213 |
+
if seed is not None and seed > -1:
|
214 |
+
generator = torch.manual_seed(seed)
|
215 |
+
else:
|
216 |
+
seed = random.randint(100, 1000000)
|
217 |
+
generator = torch.manual_seed(seed)
|
218 |
+
|
219 |
+
inputs_dict = {
|
220 |
+
"refimg": image_input,
|
221 |
+
"audio": audio_input,
|
222 |
+
"pose": pose_input,
|
223 |
+
}
|
224 |
+
|
225 |
+
print('Pose:', inputs_dict['pose'])
|
226 |
+
print('Reference:', inputs_dict['refimg'])
|
227 |
+
print('Audio:', inputs_dict['audio'])
|
228 |
+
|
229 |
+
save_name = f"{save_dir}/{timestamp}"
|
230 |
+
|
231 |
+
ref_image_pil = Image.open(inputs_dict['refimg']).resize((width, height))
|
232 |
+
audio_clip = AudioFileClip(inputs_dict['audio'])
|
233 |
+
|
234 |
+
length = min(length, int(audio_clip.duration * fps), len(os.listdir(inputs_dict['pose'])))
|
235 |
+
|
236 |
+
start_idx = 0
|
237 |
+
|
238 |
+
pose_list = []
|
239 |
+
for index in range(start_idx, start_idx + length):
|
240 |
+
tgt_musk = np.zeros((width, height, 3)).astype('uint8')
|
241 |
+
tgt_musk_path = os.path.join(inputs_dict['pose'], "{}.npy".format(index))
|
242 |
+
detected_pose = np.load(tgt_musk_path, allow_pickle=True).tolist()
|
243 |
+
imh_new, imw_new, rb, re, cb, ce = detected_pose['draw_pose_params']
|
244 |
+
im = draw_pose_select_v2(detected_pose, imh_new, imw_new, ref_w=800)
|
245 |
+
im = np.transpose(np.array(im),(1, 2, 0))
|
246 |
+
tgt_musk[rb:re,cb:ce,:] = im
|
247 |
+
|
248 |
+
tgt_musk_pil = Image.fromarray(np.array(tgt_musk)).convert('RGB')
|
249 |
+
pose_list.append(torch.Tensor(np.array(tgt_musk_pil)).to(dtype=dtype, device=device).permute(2,0,1) / 255.0)
|
250 |
+
|
251 |
+
poses_tensor = torch.stack(pose_list, dim=1).unsqueeze(0)
|
252 |
+
audio_clip = AudioFileClip(inputs_dict['audio'])
|
253 |
+
|
254 |
+
audio_clip = audio_clip.set_duration(length / fps)
|
255 |
+
video = pipe(
|
256 |
+
ref_image_pil,
|
257 |
+
inputs_dict['audio'],
|
258 |
+
poses_tensor[:,:,:length,...],
|
259 |
+
width,
|
260 |
+
height,
|
261 |
+
length,
|
262 |
+
steps,
|
263 |
+
cfg,
|
264 |
+
generator=generator,
|
265 |
+
audio_sample_rate=sample_rate,
|
266 |
+
context_frames=context_frames,
|
267 |
+
fps=fps,
|
268 |
+
context_overlap=context_overlap,
|
269 |
+
start_idx=start_idx,
|
270 |
+
).videos
|
271 |
+
|
272 |
+
final_length = min(video.shape[2], poses_tensor.shape[2], length)
|
273 |
+
video_sig = video[:, :, :final_length, :, :]
|
274 |
+
|
275 |
+
save_videos_grid(
|
276 |
+
video_sig,
|
277 |
+
save_name + "_woa_sig.mp4",
|
278 |
+
n_rows=1,
|
279 |
+
fps=fps,
|
280 |
+
)
|
281 |
+
|
282 |
+
video_clip_sig = VideoFileClip(save_name + "_woa_sig.mp4",)
|
283 |
+
video_clip_sig = video_clip_sig.set_audio(audio_clip)
|
284 |
+
video_clip_sig.write_videofile(save_name + "_sig.mp4", codec="libx264", audio_codec="aac", threads=2)
|
285 |
+
video_output = save_name + "_sig.mp4"
|
286 |
+
seed_text = gr.update(visible=True, value=seed)
|
287 |
+
return video_output, seed_text
|
288 |
+
|
289 |
+
|
290 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
291 |
+
gr.Markdown("""
|
292 |
+
<div>
|
293 |
+
<h2 style="font-size: 30px;text-align: center;">EchoMimicV2</h2>
|
294 |
+
</div>
|
295 |
+
<div style="text-align: center;">
|
296 |
+
<a href="https://github.com/antgroup/echomimic_v2">🌐 Github</a> |
|
297 |
+
<a href="https://arxiv.org/abs/2411.10061">📜 arXiv </a>
|
298 |
+
</div>
|
299 |
+
<div style="text-align: center; font-weight: bold; color: red;">
|
300 |
+
⚠️ 该演示仅供学术研究和体验使用。
|
301 |
+
</div>
|
302 |
+
|
303 |
+
""")
|
304 |
+
with gr.Column():
|
305 |
+
with gr.Row():
|
306 |
+
with gr.Column():
|
307 |
+
with gr.Group():
|
308 |
+
image_input = gr.Image(label="图像输入(自动缩放)", type="filepath")
|
309 |
+
audio_input = gr.Audio(label="音频输入", type="filepath")
|
310 |
+
pose_input = gr.Textbox(label="姿态输入(目录地址)", placeholder="请输入姿态数据的目录地址", value="assets/halfbody_demo/pose/01")
|
311 |
+
with gr.Group():
|
312 |
+
with gr.Row():
|
313 |
+
width = gr.Number(label="宽度(16的倍数,推荐768)", value=768)
|
314 |
+
height = gr.Number(label="高度(16的倍数,推荐768)", value=768)
|
315 |
+
length = gr.Number(label="视频长度,推荐240)", value=240)
|
316 |
+
with gr.Row():
|
317 |
+
steps = gr.Number(label="步骤(推荐30)", value=20)
|
318 |
+
sample_rate = gr.Number(label="采样率(推荐16000)", value=16000)
|
319 |
+
cfg = gr.Number(label="cfg(推荐2.5)", value=2.5, step=0.1)
|
320 |
+
with gr.Row():
|
321 |
+
fps = gr.Number(label="帧率(推荐24)", value=24)
|
322 |
+
context_frames = gr.Number(label="上下文框架(推荐12)", value=12)
|
323 |
+
context_overlap = gr.Number(label="上下文重叠(推荐3)", value=3)
|
324 |
+
with gr.Row():
|
325 |
+
quantization_input = gr.Checkbox(label="int8量化(推荐显存12G的用户开启,并使用不超过5秒的音频)", value=False)
|
326 |
+
seed = gr.Number(label="种子(-1为随机)", value=-1)
|
327 |
+
generate_button = gr.Button("🎬 生成视频")
|
328 |
+
with gr.Column():
|
329 |
+
video_output = gr.Video(label="输出视频")
|
330 |
+
seed_text = gr.Textbox(label="种子", interactive=False, visible=False)
|
331 |
+
gr.Examples(
|
332 |
+
examples=[
|
333 |
+
["EMTD_dataset/ref_imgs_by_FLUX/man/0001.png", "assets/halfbody_demo/audio/chinese/echomimicv2_man.wav"],
|
334 |
+
["EMTD_dataset/ref_imgs_by_FLUX/woman/0077.png", "assets/halfbody_demo/audio/chinese/echomimicv2_woman.wav"],
|
335 |
+
["EMTD_dataset/ref_imgs_by_FLUX/man/0003.png", "assets/halfbody_demo/audio/chinese/fighting.wav"],
|
336 |
+
["EMTD_dataset/ref_imgs_by_FLUX/woman/0033.png", "assets/halfbody_demo/audio/chinese/good.wav"],
|
337 |
+
["EMTD_dataset/ref_imgs_by_FLUX/man/0010.png", "assets/halfbody_demo/audio/chinese/news.wav"],
|
338 |
+
["EMTD_dataset/ref_imgs_by_FLUX/man/1168.png", "assets/halfbody_demo/audio/chinese/no_smoking.wav"],
|
339 |
+
["EMTD_dataset/ref_imgs_by_FLUX/woman/0057.png", "assets/halfbody_demo/audio/chinese/ultraman.wav"]
|
340 |
+
],
|
341 |
+
inputs=[image_input, audio_input],
|
342 |
+
label="预设人物及音频",
|
343 |
+
)
|
344 |
+
|
345 |
+
generate_button.click(
|
346 |
+
generate,
|
347 |
+
inputs=[image_input, audio_input, pose_input, width, height, length, steps, sample_rate, cfg, fps, context_frames, context_overlap, quantization_input, seed],
|
348 |
+
outputs=[video_output, seed_text],
|
349 |
+
)
|
350 |
+
|
351 |
+
|
352 |
+
|
353 |
+
if __name__ == "__main__":
|
354 |
+
demo.queue()
|
355 |
+
demo.launch(inbrowser=True)
|