File size: 5,431 Bytes
16c783e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a21d6ae
16c783e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import gradio as gr
from urllib.parse import urlparse
import requests
import time
import os

from utils.gradio_helpers import parse_outputs, process_outputs

inputs = []
inputs.append(gr.Image(
    label="Image", type="filepath"
))

inputs.append(gr.Slider(
    label="Rotate Pitch", info='''Rotation pitch: Adjusts the up and down tilt of the face''', value=0,
    minimum=-20, maximum=20
))

inputs.append(gr.Slider(
    label="Rotate Yaw", info='''Rotation yaw: Adjusts the left and right turn of the face''', value=0,
    minimum=-20, maximum=20
))

inputs.append(gr.Slider(
    label="Rotate Roll", info='''Rotation roll: Adjusts the tilt of the face to the left or right''', value=0,
    minimum=-20, maximum=20
))

inputs.append(gr.Slider(
    label="Blink", info='''Blink: Controls the degree of eye closure''', value=0,
    minimum=-20, maximum=5
))

inputs.append(gr.Slider(
    label="Eyebrow", info='''Eyebrow: Adjusts the height and shape of the eyebrows''', value=0,
    minimum=-10, maximum=15
))

inputs.append(gr.Number(
    label="Wink", info='''Wink: Controls the degree of one eye closing''', value=0
))

inputs.append(gr.Slider(
    label="Pupil X", info='''Pupil X: Adjusts the horizontal position of the pupils''', value=0,
    minimum=-15, maximum=15
))

inputs.append(gr.Slider(
    label="Pupil Y", info='''Pupil Y: Adjusts the vertical position of the pupils''', value=0,
    minimum=-15, maximum=15
))

inputs.append(gr.Slider(
    label="Aaa", info='''AAA: Controls the mouth opening for 'aaa' sound''', value=0,
    minimum=-30, maximum=120
))

inputs.append(gr.Slider(
    label="Eee", info='''EEE: Controls the mouth shape for 'eee' sound''', value=0,
    minimum=-20, maximum=15
))

inputs.append(gr.Slider(
    label="Woo", info='''WOO: Controls the mouth shape for 'woo' sound''', value=0,
    minimum=-20, maximum=15
))

inputs.append(gr.Slider(
    label="Smile", info='''Smile: Adjusts the degree of smiling''', value=0,
    minimum=-0.3, maximum=1.3
))

inputs.append(gr.Number(
    label="Src Ratio", info='''Source ratio''', value=1
))

inputs.append(gr.Slider(
    label="Sample Ratio", info='''Sample ratio''', value=1,
    minimum=-0.2, maximum=1.2
))

inputs.append(gr.Slider(
    label="Crop Factor", info='''Crop factor''', value=1.7,
    minimum=1.5, maximum=2.5
))

inputs.append(gr.Dropdown(
    choices=['webp', 'jpg', 'png'], label="output_format", info='''Format of the output images''', value="webp"
))

inputs.append(gr.Number(
    label="Output Quality", info='''Quality of the output images, from 0 to 100. 100 is best quality, 0 is lowest quality.''', value=95
))

names = ['image', 'rotate_pitch', 'rotate_yaw', 'rotate_roll', 'blink', 'eyebrow', 'wink', 'pupil_x', 'pupil_y', 'aaa', 'eee', 'woo', 'smile', 'src_ratio', 'sample_ratio', 'crop_factor', 'output_format', 'output_quality']

outputs = []
outputs.append(gr.Image())

expected_outputs = len(outputs)
def predict(request: gr.Request, *args, progress=gr.Progress(track_tqdm=True)):
    headers = {'Content-Type': 'application/json'}

    payload = {"input": {}}
    
    
    parsed_url = urlparse(str(request.url))
    base_url = parsed_url.scheme + "://" + parsed_url.netloc
    for i, key in enumerate(names):
        value = args[i]
        if value and (os.path.exists(str(value))):
            value = f"{base_url}/file=" + value
        if value is not None and value != "":
            payload["input"][key] = value

    response = requests.post("http://0.0.0.0:5000/predictions", headers=headers, json=payload)

    
    if response.status_code == 201:
        follow_up_url = response.json()["urls"]["get"]
        response = requests.get(follow_up_url, headers=headers)
        while response.json()["status"] != "succeeded":
            if response.json()["status"] == "failed":
                raise gr.Error("The submission failed!")
            response = requests.get(follow_up_url, headers=headers)
            time.sleep(1)
    if response.status_code == 200:
        json_response = response.json()
        #If the output component is JSON return the entire output response 
        if(outputs[0].get_config()["name"] == "json"):
            return json_response["output"]
        predict_outputs = parse_outputs(json_response["output"])
        processed_outputs = process_outputs(predict_outputs)
        difference_outputs = expected_outputs - len(processed_outputs)
        # If less outputs than expected, hide the extra ones
        if difference_outputs > 0:
            extra_outputs = [gr.update(visible=False)] * difference_outputs
            processed_outputs.extend(extra_outputs)
        # If more outputs than expected, cap the outputs to the expected number
        elif difference_outputs < 0:
            processed_outputs = processed_outputs[:difference_outputs]
        
        return tuple(processed_outputs) if len(processed_outputs) > 1 else processed_outputs[0]
    else:
        if(response.status_code == 409):
            raise gr.Error(f"Sorry, the Cog image is still processing. Try again in a bit.")
        raise gr.Error(f"The submission failed! Error: {response.status_code}")

title = "Demo for expression-editor cog image by fofr"
model_description = "None"

app = gr.Interface(
    fn=predict,
    inputs=inputs,
    outputs=outputs,
    title=title,
    description=model_description,
    allow_flagging="never",
)
app.launch(share=False, show_error=True)