File size: 11,372 Bytes
16c783e
71ba5f1
16c783e
 
 
 
 
 
 
71ba5f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd486d9
71ba5f1
 
 
 
 
 
 
 
 
 
 
 
a27478b
 
 
9250557
 
 
9613d25
16c783e
 
 
 
 
 
 
49771b5
16c783e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fb017a
16c783e
 
 
 
9613d25
6d90ae1
b59317d
6d90ae1
fe9ebef
 
9613d25
 
8299c8e
 
 
6ad0de3
 
293de33
6d90ae1
293de33
a27478b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9250557
 
 
6d90ae1
 
 
a27478b
6d90ae1
 
a27478b
 
6d90ae1
a27478b
6d90ae1
 
8299c8e
 
 
 
a27478b
71ba5f1
a27478b
71ba5f1
a27478b
 
9250557
 
 
 
 
 
a8517d8
 
 
 
 
9250557
a27478b
8299c8e
 
 
 
da7e1ac
8299c8e
 
a8517d8
 
 
 
 
 
 
 
 
 
 
 
8299c8e
da7e1ac
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import gradio as gr
from PIL import Image
from urllib.parse import urlparse
import requests
import time
import os

from utils.gradio_helpers import parse_outputs, process_outputs

# Function to verify the image file type and resize it if necessary
def preprocess_image(image_path):
    # Check if the file exists
    if not os.path.exists(image_path):
        raise FileNotFoundError(f"No such file: '{image_path}'")

    # Get the file extension and make sure it's a valid image format
    valid_extensions = ['jpg', 'jpeg', 'png', 'webp']
    file_extension = image_path.split('.')[-1].lower()

    if file_extension not in valid_extensions:
        raise ValueError("Invalid file type. Only JPG, PNG, and WEBP are allowed.")
    
    # Open the image
    with Image.open(image_path) as img:
        width, height = img.size

        # Check if any dimension exceeds 1024 pixels
        if width > 1024 or height > 1024:
            # Calculate the new size while maintaining aspect ratio
            if width > height:
                new_width = 1024
                new_height = int((new_width / width) * height)
            else:
                new_height = 1024
                new_width = int((new_height / height) * width)
            
            # Resize the image
            img_resized = img.resize((new_width, new_height), Image.LANCZOS)
            print(f"Resized image to {new_width}x{new_height}.")

            # Save the resized image as 'resized_image.jpg'
            output_path = 'resized_image.jpg'
            img_resized.save(output_path, 'JPEG')
            print(f"Resized image saved as {output_path}")
            return output_path
        else:
            print("Image size is within the limit, no resizing needed.")
            return image_path


def display_uploaded_image(image_in):
    return image_in

def reset_parameters():
    return gr.update(value=0), gr.update(value=0), gr.update(value=0), gr.update(value=0), gr.update(value=0), gr.update(value=0), gr.update(value=0), gr.update(value=0), gr.update(value=0), gr.update(value=0), gr.update(value=0), gr.update(value=0)

names = ['image', 'rotate_pitch', 'rotate_yaw', 'rotate_roll', 'blink', 'eyebrow', 'wink', 'pupil_x', 'pupil_y', 'aaa', 'eee', 'woo', 'smile', 'src_ratio', 'sample_ratio', 'crop_factor', 'output_format', 'output_quality']

def predict(request: gr.Request, *args, progress=gr.Progress(track_tqdm=True)):
    headers = {'Content-Type': 'application/json'}

    payload = {"input": {}}
    
    
    base_url = "http://0.0.0.0:7860"
    for i, key in enumerate(names):
        value = args[i]
        if value and (os.path.exists(str(value))):
            value = f"{base_url}/file=" + value
        if value is not None and value != "":
            payload["input"][key] = value

    response = requests.post("http://0.0.0.0:5000/predictions", headers=headers, json=payload)

    
    if response.status_code == 201:
        follow_up_url = response.json()["urls"]["get"]
        response = requests.get(follow_up_url, headers=headers)
        while response.json()["status"] != "succeeded":
            if response.json()["status"] == "failed":
                raise gr.Error("The submission failed!")
            response = requests.get(follow_up_url, headers=headers)
            time.sleep(1)
    if response.status_code == 200:
        json_response = response.json()
        #If the output component is JSON return the entire output response 
        if(outputs[0].get_config()["name"] == "json"):
            return json_response["output"]
        predict_outputs = parse_outputs(json_response["output"])
        processed_outputs = process_outputs(predict_outputs)
        return tuple(processed_outputs) if len(processed_outputs) > 1 else processed_outputs[0]
    else:
        time.sleep(1)
        if(response.status_code == 409):
            raise gr.Error(f"Sorry, the Cog image is still processing. Try again in a bit.")
        raise gr.Error(f"The submission failed! Error: {response.status_code}")


css = '''
#col-container{max-width: 720px;margin: 0 auto;}
'''
with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("# Expression Editor")
        gr.Markdown("Demo for expression-editor cog image by fofr")
        with gr.Row():
            with gr.Column():
                image = gr.Image(
                    label="Input image",
                    sources=["upload"],
                    type="filepath",
                    height=180
                )
                with gr.Tab("HEAD"):
                    with gr.Column():
                        rotate_pitch = gr.Slider(
                            label="Rotate Up-Down",
                            value=0,
                            minimum=-20, maximum=20
                        )
                        rotate_yaw = gr.Slider(
                            label="Rotate Left-Right turn", 
                            value=0,
                            minimum=-20, maximum=20
                        )
                        rotate_roll = gr.Slider(
                            label="Rotate Left-Right tilt", value=0,
                            minimum=-20, maximum=20
                        )
                with gr.Tab("EYES"):
                    with gr.Column():
                        eyebrow = gr.Slider(
                            label="Eyebrow", value=0,
                            minimum=-10, maximum=15
                        )
                        with gr.Row():
                            blink = gr.Slider(
                                label="Blink", value=0,
                                minimum=-20, maximum=5
                            )
                            
                            wink = gr.Slider(
                                label="Wink", value=0,
                                minimum=0, maximum=25
                            )
                        with gr.Row():
                            pupil_x = gr.Slider(
                                label="Pupil X", value=0,
                                minimum=-15, maximum=15
                            )
                            pupil_y = gr.Slider(
                                label="Pupil Y", value=0,
                                minimum=-15, maximum=15
                            )
                with gr.Tab("MOUTH"):
                    with gr.Column():
                        with gr.Row():
                            aaa = gr.Slider(
                                label="Aaa", value=0,
                                minimum=-30, maximum=120
                            )
                            eee = gr.Slider(
                                label="Eee", value=0,
                                minimum=-20, maximum=15
                            )
                            woo = gr.Slider(
                                label="Woo", value=0,
                                minimum=-20, maximum=15
                            )
                        smile = gr.Slider(
                            label="Smile", value=0,
                            minimum=-0.3, maximum=1.3
                        )
                with gr.Tab("More Settings"):
                    with gr.Column():
                        src_ratio = gr.Number(
                            label="Src Ratio", info='''Source ratio''', value=1
                        )
                        sample_ratio = gr.Slider(
                            label="Sample Ratio", info='''Sample ratio''', value=1,
                            minimum=-0.2, maximum=1.2
                        )
                        crop_factor = gr.Slider(
                            label="Crop Factor", info='''Crop factor''', value=1.7,
                            minimum=1.5, maximum=2.5
                        )
                        output_format = gr.Dropdown(
                            choices=['webp', 'jpg', 'png'], label="output_format", info='''Format of the output images''', value="webp"
                        )
                        output_quality = gr.Number(
                            label="Output Quality", info='''Quality of the output images, from 0 to 100. 100 is best quality, 0 is lowest quality.''', value=95
                        )
                with gr.Row():
                    reset_btn = gr.Button("Reset")
                    submit_btn = gr.Button("Submit")
            with gr.Column():
                result_image = gr.Image(elem_id="top")
                gr.HTML("""
                <div style="display: flex; flex-direction: column;justify-content: center; align-items: center; text-align: center;">
                    <p style="display: flex;gap: 6px;">
                         <a href="https://huggingface.co/spaces/fffiloni/expression-editor?duplicate=true">
                            <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg.svg" alt="Duplicate this Space">
                        </a>
                    </p>
                    <p>to skip the queue and enjoy faster inference on the GPU of your choice </p>
                </div>
                """)

    inputs = [image, rotate_pitch, rotate_yaw, rotate_roll, blink, eyebrow, wink, pupil_x, pupil_y, aaa, eee, woo, smile, src_ratio, sample_ratio, crop_factor, output_format, output_quality]
    outputs = [result_image]

    image.upload(
        fn = preprocess_image,
        inputs = [image],
        outputs = [image],
        queue = False
    )

    reset_btn.click(
        fn = reset_parameters,
        inputs = None,
        outputs = [rotate_pitch, rotate_yaw, rotate_roll, blink, eyebrow, wink, pupil_x, pupil_y, aaa, eee, woo, smile],
        queue = False
    ).then(
        fn=predict,
        inputs=inputs,
        outputs=outputs,
        show_api=False
    )
    
    submit_btn.click(
        fn=predict,
        inputs=inputs,
        outputs=outputs,
        show_api=False
    )

    rotate_pitch.release(fn=predict, inputs=inputs, outputs=outputs, show_progress="minimal", show_api=False)
    rotate_yaw.release(fn=predict, inputs=inputs, outputs=outputs, show_progress="minimal", show_api=False)
    rotate_roll.release(fn=predict, inputs=inputs, outputs=outputs, show_progress="minimal", show_api=False)
    blink.release(fn=predict, inputs=inputs, outputs=outputs, show_progress="minimal", show_api=False)
    eyebrow.release(fn=predict, inputs=inputs, outputs=outputs, show_progress="minimal", show_api=False)
    wink.release(fn=predict, inputs=inputs, outputs=outputs, show_progress="minimal", show_api=False)
    pupil_x.release(fn=predict, inputs=inputs, outputs=outputs, show_progress="minimal", show_api=False)
    pupil_y.release(fn=predict, inputs=inputs, outputs=outputs, show_progress="minimal", show_api=False)
    aaa.release(fn=predict, inputs=inputs, outputs=outputs, show_progress="minimal", show_api=False)
    eee.release(fn=predict, inputs=inputs, outputs=outputs, show_progress="minimal", show_api=False)
    woo.release(fn=predict, inputs=inputs, outputs=outputs, show_progress="minimal", show_api=False)
    smile.release(fn=predict, inputs=inputs, outputs=outputs, show_progress="minimal", show_api=False)

demo.queue(api_open=False).launch(share=False, show_error=True, show_api=False)