Spaces:
Running
on
L40S
Running
on
L40S
File size: 11,372 Bytes
16c783e 71ba5f1 16c783e 71ba5f1 fd486d9 71ba5f1 a27478b 9250557 9613d25 16c783e 49771b5 16c783e 2fb017a 16c783e 9613d25 6d90ae1 b59317d 6d90ae1 fe9ebef 9613d25 8299c8e 6ad0de3 293de33 6d90ae1 293de33 a27478b 9250557 6d90ae1 a27478b 6d90ae1 a27478b 6d90ae1 a27478b 6d90ae1 8299c8e a27478b 71ba5f1 a27478b 71ba5f1 a27478b 9250557 a8517d8 9250557 a27478b 8299c8e da7e1ac 8299c8e a8517d8 8299c8e da7e1ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import gradio as gr
from PIL import Image
from urllib.parse import urlparse
import requests
import time
import os
from utils.gradio_helpers import parse_outputs, process_outputs
# Function to verify the image file type and resize it if necessary
def preprocess_image(image_path):
# Check if the file exists
if not os.path.exists(image_path):
raise FileNotFoundError(f"No such file: '{image_path}'")
# Get the file extension and make sure it's a valid image format
valid_extensions = ['jpg', 'jpeg', 'png', 'webp']
file_extension = image_path.split('.')[-1].lower()
if file_extension not in valid_extensions:
raise ValueError("Invalid file type. Only JPG, PNG, and WEBP are allowed.")
# Open the image
with Image.open(image_path) as img:
width, height = img.size
# Check if any dimension exceeds 1024 pixels
if width > 1024 or height > 1024:
# Calculate the new size while maintaining aspect ratio
if width > height:
new_width = 1024
new_height = int((new_width / width) * height)
else:
new_height = 1024
new_width = int((new_height / height) * width)
# Resize the image
img_resized = img.resize((new_width, new_height), Image.LANCZOS)
print(f"Resized image to {new_width}x{new_height}.")
# Save the resized image as 'resized_image.jpg'
output_path = 'resized_image.jpg'
img_resized.save(output_path, 'JPEG')
print(f"Resized image saved as {output_path}")
return output_path
else:
print("Image size is within the limit, no resizing needed.")
return image_path
def display_uploaded_image(image_in):
return image_in
def reset_parameters():
return gr.update(value=0), gr.update(value=0), gr.update(value=0), gr.update(value=0), gr.update(value=0), gr.update(value=0), gr.update(value=0), gr.update(value=0), gr.update(value=0), gr.update(value=0), gr.update(value=0), gr.update(value=0)
names = ['image', 'rotate_pitch', 'rotate_yaw', 'rotate_roll', 'blink', 'eyebrow', 'wink', 'pupil_x', 'pupil_y', 'aaa', 'eee', 'woo', 'smile', 'src_ratio', 'sample_ratio', 'crop_factor', 'output_format', 'output_quality']
def predict(request: gr.Request, *args, progress=gr.Progress(track_tqdm=True)):
headers = {'Content-Type': 'application/json'}
payload = {"input": {}}
base_url = "http://0.0.0.0:7860"
for i, key in enumerate(names):
value = args[i]
if value and (os.path.exists(str(value))):
value = f"{base_url}/file=" + value
if value is not None and value != "":
payload["input"][key] = value
response = requests.post("http://0.0.0.0:5000/predictions", headers=headers, json=payload)
if response.status_code == 201:
follow_up_url = response.json()["urls"]["get"]
response = requests.get(follow_up_url, headers=headers)
while response.json()["status"] != "succeeded":
if response.json()["status"] == "failed":
raise gr.Error("The submission failed!")
response = requests.get(follow_up_url, headers=headers)
time.sleep(1)
if response.status_code == 200:
json_response = response.json()
#If the output component is JSON return the entire output response
if(outputs[0].get_config()["name"] == "json"):
return json_response["output"]
predict_outputs = parse_outputs(json_response["output"])
processed_outputs = process_outputs(predict_outputs)
return tuple(processed_outputs) if len(processed_outputs) > 1 else processed_outputs[0]
else:
time.sleep(1)
if(response.status_code == 409):
raise gr.Error(f"Sorry, the Cog image is still processing. Try again in a bit.")
raise gr.Error(f"The submission failed! Error: {response.status_code}")
css = '''
#col-container{max-width: 720px;margin: 0 auto;}
'''
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# Expression Editor")
gr.Markdown("Demo for expression-editor cog image by fofr")
with gr.Row():
with gr.Column():
image = gr.Image(
label="Input image",
sources=["upload"],
type="filepath",
height=180
)
with gr.Tab("HEAD"):
with gr.Column():
rotate_pitch = gr.Slider(
label="Rotate Up-Down",
value=0,
minimum=-20, maximum=20
)
rotate_yaw = gr.Slider(
label="Rotate Left-Right turn",
value=0,
minimum=-20, maximum=20
)
rotate_roll = gr.Slider(
label="Rotate Left-Right tilt", value=0,
minimum=-20, maximum=20
)
with gr.Tab("EYES"):
with gr.Column():
eyebrow = gr.Slider(
label="Eyebrow", value=0,
minimum=-10, maximum=15
)
with gr.Row():
blink = gr.Slider(
label="Blink", value=0,
minimum=-20, maximum=5
)
wink = gr.Slider(
label="Wink", value=0,
minimum=0, maximum=25
)
with gr.Row():
pupil_x = gr.Slider(
label="Pupil X", value=0,
minimum=-15, maximum=15
)
pupil_y = gr.Slider(
label="Pupil Y", value=0,
minimum=-15, maximum=15
)
with gr.Tab("MOUTH"):
with gr.Column():
with gr.Row():
aaa = gr.Slider(
label="Aaa", value=0,
minimum=-30, maximum=120
)
eee = gr.Slider(
label="Eee", value=0,
minimum=-20, maximum=15
)
woo = gr.Slider(
label="Woo", value=0,
minimum=-20, maximum=15
)
smile = gr.Slider(
label="Smile", value=0,
minimum=-0.3, maximum=1.3
)
with gr.Tab("More Settings"):
with gr.Column():
src_ratio = gr.Number(
label="Src Ratio", info='''Source ratio''', value=1
)
sample_ratio = gr.Slider(
label="Sample Ratio", info='''Sample ratio''', value=1,
minimum=-0.2, maximum=1.2
)
crop_factor = gr.Slider(
label="Crop Factor", info='''Crop factor''', value=1.7,
minimum=1.5, maximum=2.5
)
output_format = gr.Dropdown(
choices=['webp', 'jpg', 'png'], label="output_format", info='''Format of the output images''', value="webp"
)
output_quality = gr.Number(
label="Output Quality", info='''Quality of the output images, from 0 to 100. 100 is best quality, 0 is lowest quality.''', value=95
)
with gr.Row():
reset_btn = gr.Button("Reset")
submit_btn = gr.Button("Submit")
with gr.Column():
result_image = gr.Image(elem_id="top")
gr.HTML("""
<div style="display: flex; flex-direction: column;justify-content: center; align-items: center; text-align: center;">
<p style="display: flex;gap: 6px;">
<a href="https://huggingface.co/spaces/fffiloni/expression-editor?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg.svg" alt="Duplicate this Space">
</a>
</p>
<p>to skip the queue and enjoy faster inference on the GPU of your choice </p>
</div>
""")
inputs = [image, rotate_pitch, rotate_yaw, rotate_roll, blink, eyebrow, wink, pupil_x, pupil_y, aaa, eee, woo, smile, src_ratio, sample_ratio, crop_factor, output_format, output_quality]
outputs = [result_image]
image.upload(
fn = preprocess_image,
inputs = [image],
outputs = [image],
queue = False
)
reset_btn.click(
fn = reset_parameters,
inputs = None,
outputs = [rotate_pitch, rotate_yaw, rotate_roll, blink, eyebrow, wink, pupil_x, pupil_y, aaa, eee, woo, smile],
queue = False
).then(
fn=predict,
inputs=inputs,
outputs=outputs,
show_api=False
)
submit_btn.click(
fn=predict,
inputs=inputs,
outputs=outputs,
show_api=False
)
rotate_pitch.release(fn=predict, inputs=inputs, outputs=outputs, show_progress="minimal", show_api=False)
rotate_yaw.release(fn=predict, inputs=inputs, outputs=outputs, show_progress="minimal", show_api=False)
rotate_roll.release(fn=predict, inputs=inputs, outputs=outputs, show_progress="minimal", show_api=False)
blink.release(fn=predict, inputs=inputs, outputs=outputs, show_progress="minimal", show_api=False)
eyebrow.release(fn=predict, inputs=inputs, outputs=outputs, show_progress="minimal", show_api=False)
wink.release(fn=predict, inputs=inputs, outputs=outputs, show_progress="minimal", show_api=False)
pupil_x.release(fn=predict, inputs=inputs, outputs=outputs, show_progress="minimal", show_api=False)
pupil_y.release(fn=predict, inputs=inputs, outputs=outputs, show_progress="minimal", show_api=False)
aaa.release(fn=predict, inputs=inputs, outputs=outputs, show_progress="minimal", show_api=False)
eee.release(fn=predict, inputs=inputs, outputs=outputs, show_progress="minimal", show_api=False)
woo.release(fn=predict, inputs=inputs, outputs=outputs, show_progress="minimal", show_api=False)
smile.release(fn=predict, inputs=inputs, outputs=outputs, show_progress="minimal", show_api=False)
demo.queue(api_open=False).launch(share=False, show_error=True, show_api=False) |