Spaces:
Sleeping
Sleeping
File size: 13,960 Bytes
4120479 7c6dd97 c694422 ab7c449 9b729f7 ca25d4d af5ea8a c6550c9 5b09dff 4120479 1475e41 3eb8dac 7c6dd97 5042a41 4120479 af5ea8a 4120479 20706a7 4120479 5042a41 9b729f7 ba35348 5042a41 4aa6570 5042a41 735a271 5042a41 2f40f84 4120479 edf408e ce04d24 2130441 b819231 ce04d24 b0fbf54 4120479 b0fbf54 b66cade bc0b5e4 ca25d4d bc0b5e4 ca25d4d 92c7c82 bc5aade b0fbf54 7b45d83 4120479 ad8076c 3eb8dac 5042a41 3ff5e41 a1a833d 5042a41 c7fa047 a1a833d ffede06 fb4901e ffede06 fb4901e a1a833d c694422 fb4901e 1323497 fb4901e 1323497 a1a833d ffede06 0fac10f a1a833d c7fa047 3b6af48 4120479 3b6af48 4120479 a1a833d 4120479 a5454cf af5ea8a ce1c1c2 4120479 145660e 786f873 00e9fdd 786f873 4120479 ea9cf0a 4120479 0052f82 4120479 0052f82 4120479 9155e06 786f873 a56c826 4120479 06bf887 9155e06 965ea29 4120479 af5ea8a 0bd58d3 af5ea8a 8428948 98e159e af5ea8a 4120479 cad7f41 b819231 4120479 0d23c84 ce04d24 5b09dff 786f873 9155e06 d1f8613 ce04d24 5b09dff 786f873 9155e06 d1f8613 ce04d24 edf408e ce04d24 7b45d83 0d23c84 b0fbf54 3b258c8 ce04d24 29b4824 92c7c82 b48fe41 b157e21 35002e5 b48fe41 b157e21 35002e5 b48fe41 ca25d4d 4120479 af5ea8a 8612be0 4120479 cad7f41 b6fa736 9155e06 4120479 03d99f7 8428948 98e159e ca25d4d 7466734 d92fc15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import gradio as gr
from time import sleep, time
from diffusers import DiffusionPipeline, StableDiffusionXLPipeline
from huggingface_hub import hf_hub_download, CommitScheduler
from safetensors.torch import load_file
from share_btn import community_icon_html, loading_icon_html, share_js
from uuid import uuid4
from pathlib import Path
from PIL import Image
import torch
import json
import random
import copy
import gc
import pickle
import spaces
lora_list = hf_hub_download(repo_id="multimodalart/LoraTheExplorer", filename="sdxl_loras.json", repo_type="space")
IMAGE_DATASET_DIR = Path("image_dataset") / f"train-{uuid4()}"
IMAGE_DATASET_DIR.mkdir(parents=True, exist_ok=True)
IMAGE_JSONL_PATH = IMAGE_DATASET_DIR / "metadata.jsonl"
scheduler = CommitScheduler(
repo_id="multimodalart/lora-fusing-preferences",
repo_type="dataset",
folder_path=IMAGE_DATASET_DIR,
path_in_repo=IMAGE_DATASET_DIR.name,
every=10
)
with open(lora_list, "r") as file:
data = json.load(file)
sdxl_loras = [
{
"image": item["image"] if item["image"].startswith("https://") else f'https://huggingface.co/spaces/multimodalart/LoraTheExplorer/resolve/main/{item["image"]}',
"title": item["title"],
"repo": item["repo"],
"trigger_word": item["trigger_word"],
"weights": item["weights"],
"is_compatible": item["is_compatible"],
"is_pivotal": item.get("is_pivotal", False),
"text_embedding_weights": item.get("text_embedding_weights", None),
"is_nc": item.get("is_nc", False)
}
for item in data
]
state_dicts = {}
for item in sdxl_loras:
saved_name = hf_hub_download(item["repo"], item["weights"])
if not saved_name.endswith('.safetensors'):
state_dict = torch.load(saved_name, map_location=torch.device('cpu'))
else:
state_dict = load_file(saved_name, device="cpu")
state_dicts[item["repo"]] = {
"saved_name": saved_name,
"state_dict": state_dict
}
css = '''
.gradio-container{max-width: 650px! important}
#title{text-align:center;}
#title h1{font-size: 250%}
.selected_random img{object-fit: cover}
.selected_random [data-testid="block-label"] span{display: none}
.plus_column{align-self: center}
.plus_button{font-size: 235% !important; text-align: center;margin-bottom: 19px}
#prompt{padding: 0 0 1em 0}
#prompt input{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;}
#run_button{position: absolute;margin-top: 25.8px;right: 0;margin-right: 0.75em;border-bottom-left-radius: 0px;border-top-left-radius: 0px}
.random_column{align-self: center; align-items: center;gap: 0.5em !important}
#share-btn-container{padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 13rem; margin-left: auto;margin-top: 0.35em;}
div#share-btn-container > div {flex-direction: row;background: black;align-items: center}
#share-btn-container:hover {background-color: #060606}
#share-btn {all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.5rem !important; padding-bottom: 0.5rem !important;right:0;font-size: 15px;}
#share-btn * {all: unset}
#share-btn-container div:nth-child(-n+2){width: auto !important;min-height: 0px !important;}
#share-btn-container .wrap {display: none !important}
#share-btn-container.hidden {display: none!important}
#post_gen_info{margin-top: .5em}
#thumbs_up_clicked{background:green}
#thumbs_down_clicked{background:red}
.title_lora a{color: var(--body-text-color) !important; opacity:0.6}
#prompt_area .form{border:0}
#reroll_button{position: absolute;right: 0;flex-grow: 1;min-width: 75px;padding: .1em}
'''
original_pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
@spaces.GPU
def merge_and_run(prompt, negative_prompt, shuffled_items, lora_1_scale=0.5, lora_2_scale=0.5, seed=-1):
repo_id_1 = shuffled_items[0]['repo']
repo_id_2 = shuffled_items[1]['repo']
print("Loading state dicts...")
start_time = time()
state_dict_1 = copy.deepcopy(state_dicts[repo_id_1]["state_dict"])
state_dict_1 = {k: v.to(device="cuda", dtype=torch.float16) for k,v in state_dict_1.items() if torch.is_tensor(v)}
state_dict_2 = copy.deepcopy(state_dicts[repo_id_2]["state_dict"])
state_dict_2 = {k: v.to(device="cuda", dtype=torch.float16) for k,v in state_dict_2.items() if torch.is_tensor(v)}
state_dict_time = time() - start_time
print(f"State Dict time: {state_dict_time}")
start_time = time()
unet = copy.deepcopy(original_pipe.unet)
text_encoder=copy.deepcopy(original_pipe.text_encoder)
text_encoder_2=copy.deepcopy(original_pipe.text_encoder_2)
pipe = StableDiffusionXLPipeline(vae=original_pipe.vae,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
scheduler=original_pipe.scheduler,
tokenizer=original_pipe.tokenizer,
tokenizer_2=original_pipe.tokenizer_2,
unet=unet)
pickle_time = time() - start_time
print(f"copy time: {pickle_time}")
pipe.to("cuda")
start_time = time()
print("Loading LoRA weights...")
pipe.load_lora_weights(state_dict_1, low_cpu_mem_usage=True)
pipe.fuse_lora(lora_1_scale)
pipe.load_lora_weights(state_dict_2, low_cpu_mem_usage=True)
pipe.fuse_lora(lora_2_scale)
lora_time = time() - start_time
print(f"Loaded LoRAs time: {lora_time}")
if negative_prompt == "":
negative_prompt = None
if(seed < 0):
seed = random.randint(0, 2147483647)
generator = torch.Generator(device="cuda").manual_seed(seed)
image = pipe(prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=20, width=768, height=768, generator=generator).images[0]
return image, gr.update(visible=True), seed, gr.update(visible=True, interactive=True), gr.update(visible=False), gr.update(visible=True, interactive=True), gr.update(visible=False)
def get_description(item):
trigger_word = item["trigger_word"]
return f"Trigger: `{trigger_word}`" if trigger_word else "No trigger, applied automatically", trigger_word
def truncate_string(s, max_length=29):
return s[:max_length - 3] + "..." if len(s) > max_length else s
def shuffle_images():
compatible_items = [item for item in sdxl_loras if item['is_compatible']]
random.shuffle(compatible_items)
two_shuffled_items = compatible_items[:2]
title_1 = gr.update(label=two_shuffled_items[0]['title'], value=two_shuffled_items[0]['image'])
title_2 = gr.update(label=two_shuffled_items[1]['title'], value=two_shuffled_items[1]['image'])
repo_id_1 = gr.update(value=two_shuffled_items[0]['repo'])
repo_id_2 = gr.update(value=two_shuffled_items[1]['repo'])
description_1, trigger_word_1 = get_description(two_shuffled_items[0])
description_2, trigger_word_2 = get_description(two_shuffled_items[1])
lora_1_link = f"[{truncate_string(two_shuffled_items[0]['repo'])}](https://huggingface.co/{two_shuffled_items[0]['repo']}) ✨"
lora_2_link = f"[{truncate_string(two_shuffled_items[1]['repo'])}](https://huggingface.co/{two_shuffled_items[1]['repo']}) ✨"
prompt_description_1 = gr.update(value=description_1, visible=True)
prompt_description_2 = gr.update(value=description_2, visible=True)
prompt = gr.update(value=f"{trigger_word_1} {trigger_word_2}")
scale = gr.update(value=0.7)
return lora_1_link, title_1, prompt_description_1, repo_id_1, lora_2_link, title_2, prompt_description_2, repo_id_2, prompt, two_shuffled_items, scale, scale
def save_preferences(lora_1_id, lora_1_scale, lora_2_id, lora_2_scale, prompt, generated_image, thumbs_direction, seed):
image_path = IMAGE_DATASET_DIR / f"{uuid4()}.png"
with scheduler.lock:
Image.fromarray(generated_image).save(image_path)
with IMAGE_JSONL_PATH.open("a") as f:
json.dump({"prompt": prompt, "file_name":image_path.name, "lora_1_id": lora_2_id, "lora_1_scale": lora_1_scale, "lora_2_id": lora_2_id, "lora_2_scale": lora_2_scale, "thumbs_direction": thumbs_direction, "seed": seed}, f)
f.write("\n")
return gr.update(visible=False), gr.update(visible=True), gr.update(interactive=False)
with gr.Blocks(css=css) as demo:
shuffled_items = gr.State()
title = gr.HTML(
'''<h1>LoRA Roulette 🎰</h1>
<p>This random LoRAs are loaded into SDXL, can you find a fun way to combine them? 🎨</p>
''',
elem_id="title"
)
with gr.Column():
with gr.Column(min_width=10, scale=16, elem_classes="plus_column"):
with gr.Row():
with gr.Column(min_width=10, scale=4, elem_classes="random_column"):
lora_1_link = gr.Markdown(elem_classes="title_lora")
lora_1 = gr.Image(interactive=False, show_label=False, height=150, elem_classes="selected_random", elem_id="randomLoRA_1", show_share_button=False, show_download_button=False)
lora_1_id = gr.Textbox(visible=False, elem_id="random_lora_1_id")
lora_1_prompt = gr.Markdown(visible=False)
with gr.Column(min_width=10, scale=1, elem_classes="plus_column"):
plus = gr.HTML("+", elem_classes="plus_button")
with gr.Column(min_width=10, scale=4, elem_classes="random_column"):
lora_2_link = gr.Markdown(elem_classes="title_lora")
lora_2 = gr.Image(interactive=False, show_label=False, height=150, elem_classes="selected_random", elem_id="randomLoRA_2", show_share_button=False, show_download_button=False)
lora_2_id = gr.Textbox(visible=False, elem_id="random_lora_2_id")
lora_2_prompt = gr.Markdown(visible=False)
with gr.Column(min_width=10, scale=2, elem_classes="plus_column"):
equal = gr.HTML("=", elem_classes="plus_button")
shuffle_button = gr.Button("🎲 reroll", elem_id="reroll_button")
with gr.Column(min_width=10, scale=14):
with gr.Box(elem_id="generate_area"):
with gr.Row(elem_id="prompt_area"):
prompt = gr.Textbox(label="Your prompt", info="Rearrange the trigger words into a coherent prompt", show_label=False, interactive=True, elem_id="prompt")
run_btn = gr.Button("Run", elem_id="run_button")
output_image = gr.Image(label="Output", height=355, elem_id="output_image", interactive=False)
with gr.Row(visible=False, elem_id="post_gen_info") as post_gen_info:
with gr.Column(min_width=10):
thumbs_up = gr.Button("👍", elem_id="thumbs_up_unclicked")
thumbs_up_clicked = gr.Button("👍", elem_id="thumbs_up_clicked", interactive=False, visible=False)
with gr.Column(min_width=10):
thumbs_down = gr.Button("👎", elem_id="thumbs_down_unclicked")
thumbs_down_clicked = gr.Button("👎", elem_id="thumbs_down_clicked", interactive=False, visible=False)
with gr.Column(min_width=10):
with gr.Group(elem_id="share-btn-container") as share_group:
community_icon = gr.HTML(community_icon_html)
loading_icon = gr.HTML(loading_icon_html)
share_button = gr.Button("Share to community", elem_id="share-btn")
with gr.Accordion("Advanced settings", open=False):
negative_prompt = gr.Textbox(label="Negative prompt")
seed = gr.Slider(label="Seed", info="-1 denotes a random seed", minimum=-1, maximum=2147483647, value=-1)
last_used_seed = gr.Number(label="Last used seed", info="The seed used in the last generation", minimum=0, maximum=2147483647, value=-1, interactive=False)
with gr.Row():
lora_1_scale = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=1, step=0.1, value=0.7)
lora_2_scale = gr.Slider(label="LoRa 2 Scale", minimum=0, maximum=1, step=0.1, value=0.7)
gr.Markdown("Generate with intent in [LoRA the Explorer](https://huggingface.co/spaces/multimodalart/LoraTheExplorer), but remember: sometimes restrictions flourish creativity 🌸")
demo.load(shuffle_images, inputs=[], outputs=[lora_1_link, lora_1, lora_1_prompt, lora_1_id, lora_2_link, lora_2, lora_2_prompt, lora_2_id, prompt, shuffled_items, lora_1_scale, lora_2_scale], queue=False, show_progress="hidden")
shuffle_button.click(shuffle_images, outputs=[lora_1_link, lora_1, lora_1_prompt, lora_1_id, lora_2_link, lora_2, lora_2_prompt, lora_2_id, prompt, shuffled_items, lora_1_scale, lora_2_scale], queue=False, show_progress="hidden")
run_btn.click(merge_and_run,
inputs=[prompt, negative_prompt, shuffled_items, lora_1_scale, lora_2_scale, seed],
outputs=[output_image, post_gen_info, last_used_seed, thumbs_up, thumbs_up_clicked, thumbs_down, thumbs_down_clicked])
prompt.submit(merge_and_run,
inputs=[prompt, negative_prompt, shuffled_items, lora_1_scale, lora_2_scale, seed],
outputs=[output_image, post_gen_info, last_used_seed, thumbs_up, thumbs_up_clicked, thumbs_down, thumbs_down_clicked])
thumbs_up.click(save_preferences, inputs=[lora_1_id, lora_1_scale, lora_2_id, lora_2_scale, prompt, output_image, gr.State("up"), seed], outputs=[thumbs_up, thumbs_up_clicked, thumbs_down])
thumbs_down.click(save_preferences, inputs=[lora_1_id, lora_1_scale, lora_2_id, lora_2_scale, prompt, output_image, gr.State("down"), seed], outputs=[thumbs_down, thumbs_down_clicked, thumbs_up])
share_button.click(None, [], [], _js=share_js)
demo.queue(concurrency_count=4)
demo.launch() |