fffiloni's picture
Update app.py
238d2f7
raw
history blame
4.75 kB
import gradio as gr
from huggingface_hub import login
import os
hf_token = os.environ.get("HF_TOKEN")
login(token=hf_token)
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
from diffusers.utils import load_image
from PIL import Image
import torch
import numpy as np
import cv2
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
controlnet = ControlNetModel.from_pretrained(
"diffusers/controlnet-canny-sdxl-1.0",
torch_dtype=torch.float16
)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
controlnet=controlnet,
vae=vae,
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True
)
pipe.to("cuda")
#pipe.enable_model_cpu_offload()
def infer(use_custom_model, model_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, steps, seed, progress=gr.Progress(track_tqdm=True)):
prompt = prompt
negative_prompt = negative_prompt
generator = torch.Generator(device="cuda").manual_seed(seed)
if preprocessor == "canny":
image = load_image(image_in)
image = np.array(image)
image = cv2.Canny(image, 100, 200)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
image = Image.fromarray(image)
if use_custom_model:
custom_model = model_name
# This is where you load your trained weights
pipe.load_lora_weights(custom_model, use_auth_token=True)
lora_scale=custom_lora_weight
images = pipe(
prompt,
negative_prompt=negative_prompt,
image=image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
guidance_scale = guidance_scale,
num_inference_steps=steps,
generator=generator,
cross_attention_kwargs={"scale": lora_scale}
).images
else:
images = pipe(
prompt,
negative_prompt=negative_prompt,
image=image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
guidance_scale = guidance_scale,
num_inference_steps=steps,
generator=generator,
).images
images[0].save(f"result.png")
return f"result.png"
css="""
#col-container{
margin: 0 auto;
max-width: 680px;
text-align: left;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML("""
<h2 style="text-align: center;">SD-XL Control LoRas</h2>
<p style="text-align: center;">Use StableDiffusion XL with <a href="https://huggingface.co/collections/diffusers/sdxl-controlnets-64f9c35846f3f06f5abe351f">Diffusers' SDXL ControlNets</a></p>
""")
image_in = gr.Image(source="upload", type="filepath")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt")
negative_prompt = gr.Textbox(label="Negative prompt", value="extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured")
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=7.5)
steps = gr.Slider(label="Inference Steps", minimum="25", maximum="50", step=1, value=25)
with gr.Column():
preprocessor = gr.Dropdown(label="Preprocessor", choices=["canny"], value="canny", interactive=False, info="For the moment, only canny is available")
controlnet_conditioning_scale = gr.Slider(label="Controlnet conditioning Scale", minimum=0.1, maximum=0.9, step=0.01, value=0.5, type="float")
seed = gr.Slider(label="seed", minimum=0, maximum=500000, step=1, value=42)
use_custom_model = gr.Checkbox(label="Use a public custom model ?(optional)", value=False, info="To use a private model, you'll prefer to duplicate the space with your own access token.")
with gr.Row():
model_name = gr.Textbox(label="Custom Model to use", placeholder="username/my_custom_public_model")
custom_lora_weight = gr.Slider(label="Custom model weights", minimum=0.1, maximum=0.9, step=0.1, value=0.9)
submit_btn = gr.Button("Submit")
result = gr.Image(label="Result")
submit_btn.click(
fn = infer,
inputs = [use_custom_model, model_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, steps, seed],
outputs = [result]
)
demo.queue(max_size=12).launch()