Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import login, HfFileSystem, HfApi, ModelCard | |
import os | |
import spaces | |
import random | |
import torch | |
is_shared_ui = True if "fffiloni/sdxl-control-loras" in os.environ['SPACE_ID'] else False | |
hf_token = os.environ.get("HF_TOKEN") | |
login(token=hf_token) | |
fs = HfFileSystem(token=hf_token) | |
api = HfApi() | |
device="cuda" if torch.cuda.is_available() else "cpu" | |
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL | |
from diffusers.utils import load_image | |
from PIL import Image | |
import torch | |
import numpy as np | |
import cv2 | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
def check_use_custom_or_no(value): | |
if value is True: | |
return gr.update(visible=True) | |
else: | |
return gr.update(visible=False) | |
def get_files(file_paths): | |
last_files = {} # Dictionary to store the last file for each path | |
for file_path in file_paths: | |
# Split the file path into directory and file components | |
directory, file_name = file_path.rsplit('/', 1) | |
# Update the last file for the current path | |
last_files[directory] = file_name | |
# Extract the last files from the dictionary | |
result = list(last_files.values()) | |
return result | |
def load_model(model_name): | |
if model_name == "": | |
gr.Warning("If you want to use a private model, you need to duplicate this space on your personal account.") | |
raise gr.Error("You forgot to define Model ID.") | |
# Get instance_prompt a.k.a trigger word | |
card = ModelCard.load(model_name) | |
repo_data = card.data.to_dict() | |
instance_prompt = repo_data.get("instance_prompt") | |
if instance_prompt is not None: | |
print(f"Trigger word: {instance_prompt}") | |
else: | |
instance_prompt = "no trigger word needed" | |
print(f"Trigger word: no trigger word needed") | |
# List all ".safetensors" files in repo | |
sfts_available_files = fs.glob(f"{model_name}/*safetensors") | |
sfts_available_files = get_files(sfts_available_files) | |
if sfts_available_files == []: | |
sfts_available_files = ["NO SAFETENSORS FILE"] | |
print(f"Safetensors available: {sfts_available_files}") | |
return model_name, "Model Ready", gr.update(choices=sfts_available_files, value=sfts_available_files[0], visible=True), gr.update(value=instance_prompt, visible=True) | |
def custom_model_changed(model_name, previous_model): | |
if model_name == "" and previous_model == "" : | |
status_message = "" | |
elif model_name != previous_model: | |
status_message = "model changed, please reload before any new run" | |
else: | |
status_message = "model ready" | |
return status_message | |
def resize_image(input_path, output_path, target_height): | |
# Open the input image | |
img = Image.open(input_path) | |
# Calculate the aspect ratio of the original image | |
original_width, original_height = img.size | |
original_aspect_ratio = original_width / original_height | |
# Calculate the new width while maintaining the aspect ratio and the target height | |
new_width = int(target_height * original_aspect_ratio) | |
# Resize the image while maintaining the aspect ratio and fixing the height | |
img = img.resize((new_width, target_height), Image.LANCZOS) | |
# Save the resized image | |
img.save(output_path) | |
return output_path | |
def infer(use_custom_model, model_name, weight_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, inf_steps, seed, progress=gr.Progress(track_tqdm=True)): | |
prompt = prompt | |
negative_prompt = negative_prompt | |
if seed < 0 : | |
seed = random.randint(0, 423538377342) | |
generator = torch.Generator(device=device).manual_seed(seed) | |
if image_in == None: | |
raise gr.Error("You forgot to upload a source image.") | |
image_in = resize_image(image_in, "resized_input.jpg", 1024) | |
if preprocessor == "canny": | |
image = load_image(image_in) | |
image = np.array(image) | |
image = cv2.Canny(image, 100, 200) | |
image = image[:, :, None] | |
image = np.concatenate([image, image, image], axis=2) | |
image = Image.fromarray(image) | |
controlnet = ControlNetModel.from_pretrained( | |
"diffusers/controlnet-canny-sdxl-1.0", | |
torch_dtype=torch.float16 | |
) | |
if preprocessor == "lineart": | |
image = Image.open(image_in) | |
image = image.convert("RGB") | |
image = np.array(image) | |
image = 255 - image | |
image = Image.fromarray(image) | |
controlnet = ControlNetModel.from_pretrained( | |
"TheMistoAI/MistoLine", | |
torch_dtype=torch.float16, | |
variant="fp16" | |
) | |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", | |
controlnet=controlnet, | |
vae=vae, | |
torch_dtype=torch.float16, | |
variant="fp16", | |
use_safetensors=True | |
) | |
pipe.to(device) | |
if use_custom_model: | |
if model_name == "": | |
raise gr.Error("you forgot to set a custom model name.") | |
custom_model = model_name | |
# This is where you load your trained weights | |
if weight_name == "NO SAFETENSORS FILE": | |
pipe.load_lora_weights( | |
custom_model, | |
low_cpu_mem_usage = True, | |
use_auth_token = True | |
) | |
else: | |
pipe.load_lora_weights( | |
custom_model, | |
weight_name = weight_name, | |
low_cpu_mem_usage = True, | |
use_auth_token = True | |
) | |
lora_scale=custom_lora_weight | |
images = pipe( | |
prompt, | |
negative_prompt=negative_prompt, | |
image=image, | |
controlnet_conditioning_scale=float(controlnet_conditioning_scale), | |
guidance_scale = float(guidance_scale), | |
num_inference_steps=inf_steps, | |
generator=generator, | |
cross_attention_kwargs={"scale": lora_scale} | |
).images | |
else: | |
images = pipe( | |
prompt, | |
negative_prompt=negative_prompt, | |
image=image, | |
controlnet_conditioning_scale=float(controlnet_conditioning_scale), | |
guidance_scale = float(guidance_scale), | |
num_inference_steps=inf_steps, | |
generator=generator, | |
).images | |
images[0].save(f"result.png") | |
#return f"result.png", seed | |
return [image, images[0]], seed | |
css=""" | |
#col-container{ | |
margin: 0 auto; | |
max-width: 720px; | |
text-align: left; | |
} | |
div#warning-duplicate { | |
background-color: #ebf5ff; | |
padding: 0 16px 16px; | |
margin: 20px 0; | |
} | |
div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p { | |
color: #0f4592!important; | |
} | |
div#warning-duplicate strong { | |
color: #0f4592; | |
} | |
p.actions { | |
display: flex; | |
align-items: center; | |
margin: 20px 0; | |
} | |
div#warning-duplicate .actions a { | |
display: inline-block; | |
margin-right: 10px; | |
} | |
button#load_model_btn{ | |
height: 46px; | |
} | |
#status_info{ | |
font-size: 0.9em; | |
} | |
.custom-color { | |
color: #030303 !important; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
if is_shared_ui: | |
top_description = gr.HTML(f''' | |
<div class="gr-prose"> | |
<h2 class="custom-color"><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg> | |
Note: you might want to use a <strong>private</strong> custom LoRa model</h2> | |
<p class="main-message custom-color"> | |
To do so, <strong>duplicate the Space</strong> and run it on your own profile using <strong>your own access token</strong> and eventually a GPU (T4-small or A10G-small) for faster inference without waiting in the queue.<br /> | |
</p> | |
<p class="actions custom-color"> | |
<a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true"> | |
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg-dark.svg" alt="Duplicate this Space" /> | |
</a> | |
to start using private models and skip the queue | |
</p> | |
</div> | |
''', elem_id="warning-duplicate") | |
gr.HTML(""" | |
<h2 style="text-align: center;">SD-XL Control LoRas</h2> | |
<p style="text-align: center;">Use StableDiffusion XL with <a href="https://huggingface.co/collections/diffusers/sdxl-controlnets-64f9c35846f3f06f5abe351f">Diffusers' SDXL ControlNets</a></p> | |
""") | |
use_custom_model = gr.Checkbox(label="Use a custom pre-trained LoRa model ? (optional)", value=False, info="To use a private model, you'll need to duplicate the space with your own access token.") | |
with gr.Group(visible=False) as custom_model_box: | |
with gr.Row(): | |
with gr.Column(): | |
if not is_shared_ui: | |
your_username = api.whoami()["name"] | |
my_models = api.list_models(author=your_username, filter=["diffusers", "stable-diffusion-xl", 'lora']) | |
model_names = [item.modelId for item in my_models] | |
if not is_shared_ui: | |
custom_model = gr.Dropdown( | |
label = "Your custom model ID", | |
info="You can pick one of your private models", | |
choices = model_names, | |
allow_custom_value = True | |
#placeholder = "username/model_id" | |
) | |
else: | |
custom_model = gr.Textbox( | |
label="Your custom model ID", | |
placeholder="your_username/your_trained_model_name", | |
info="Make sure your model is set to PUBLIC" | |
) | |
weight_name = gr.Dropdown( | |
label="Safetensors file", | |
#value="pytorch_lora_weights.safetensors", | |
info="specify which one if model has several .safetensors files", | |
allow_custom_value=True, | |
visible = False | |
) | |
with gr.Column(): | |
with gr.Group(): | |
load_model_btn = gr.Button("Load my model", elem_id="load_model_btn") | |
previous_model = gr.Textbox( | |
visible = False | |
) | |
model_status = gr.Textbox( | |
label = "model status", | |
show_label = False, | |
elem_id = "status_info" | |
) | |
trigger_word = gr.Textbox(label="Trigger word", interactive=False, visible=False) | |
image_in = gr.Image(sources=["upload"], type="filepath") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Group(): | |
prompt = gr.Textbox(label="Prompt") | |
negative_prompt = gr.Textbox(label="Negative prompt", value="extra digit, fewer digits, cropped") | |
with gr.Group(): | |
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=7.5) | |
inf_steps = gr.Slider(label="Inference Steps", minimum="25", maximum="50", step=1, value=25) | |
custom_lora_weight = gr.Slider(label="Custom model weights", minimum=0.1, maximum=1.0, step=0.1, value=0.9) | |
with gr.Column(): | |
with gr.Group(): | |
preprocessor = gr.Dropdown(label="Preprocessor", choices=["canny", "lineart"], value="canny", interactive=True, info="For the moment, only canny is available") | |
controlnet_conditioning_scale = gr.Slider(label="Controlnet conditioning Scale", minimum=0.1, maximum=1.0, step=0.01, value=0.5) | |
with gr.Group(): | |
seed = gr.Slider( | |
label="Seed", | |
info = "-1 denotes a random seed", | |
minimum=-1, | |
maximum=423538377342, | |
step=1, | |
value=-1 | |
) | |
last_used_seed = gr.Number( | |
label = "Last used seed", | |
info = "the seed used in the last generation", | |
) | |
submit_btn = gr.Button("Submit") | |
result = gr.Gallery(label="Result") | |
use_custom_model.change( | |
fn = check_use_custom_or_no, | |
inputs =[use_custom_model], | |
outputs = [custom_model_box], | |
queue = False | |
) | |
custom_model.blur( | |
fn=custom_model_changed, | |
inputs = [custom_model, previous_model], | |
outputs = [model_status], | |
queue = False | |
) | |
load_model_btn.click( | |
fn = load_model, | |
inputs=[custom_model], | |
outputs = [previous_model, model_status, weight_name, trigger_word], | |
queue = False | |
) | |
submit_btn.click( | |
fn = infer, | |
inputs = [use_custom_model, custom_model, weight_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, inf_steps, seed], | |
outputs = [result, last_used_seed] | |
) | |
demo.queue(max_size=12).launch() | |