fffiloni commited on
Commit
a4f5d8c
1 Parent(s): 66af8e6

Added possibility to specify safetensors

Browse files
Files changed (1) hide show
  1. app.py +4 -3
app.py CHANGED
@@ -60,7 +60,7 @@ def resize_image(input_path, output_path, target_height):
60
 
61
  return output_path
62
 
63
- def infer(use_custom_model, model_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, inf_steps, seed, progress=gr.Progress(track_tqdm=True)):
64
  prompt = prompt
65
  negative_prompt = negative_prompt
66
  generator = torch.Generator(device=device).manual_seed(seed)
@@ -88,7 +88,7 @@ def infer(use_custom_model, model_name, custom_lora_weight, image_in, prompt, ne
88
  custom_model = model_name
89
 
90
  # This is where you load your trained weights
91
- pipe.load_lora_weights(custom_model, use_auth_token=True)
92
 
93
  lora_scale=custom_lora_weight
94
 
@@ -183,13 +183,14 @@ with gr.Blocks(css=css) as demo:
183
  use_custom_model = gr.Checkbox(label="Use a public custom model ?(optional)", value=False, info="To use a private model, you'll prefer to duplicate the space with your own access token.")
184
  with gr.Row():
185
  model_name = gr.Textbox(label="Custom Model to use", placeholder="username/my_custom_public_model")
 
186
  custom_lora_weight = gr.Slider(label="Custom model weights", minimum=0.1, maximum=0.9, step=0.1, value=0.9)
187
  submit_btn = gr.Button("Submit")
188
  result = gr.Image(label="Result")
189
 
190
  submit_btn.click(
191
  fn = infer,
192
- inputs = [use_custom_model, model_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, inf_steps, seed],
193
  outputs = [result]
194
  )
195
 
 
60
 
61
  return output_path
62
 
63
+ def infer(use_custom_model, model_name, weight_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, inf_steps, seed, progress=gr.Progress(track_tqdm=True)):
64
  prompt = prompt
65
  negative_prompt = negative_prompt
66
  generator = torch.Generator(device=device).manual_seed(seed)
 
88
  custom_model = model_name
89
 
90
  # This is where you load your trained weights
91
+ pipe.load_lora_weights(custom_model, weight_name=weight_name, use_auth_token=True)
92
 
93
  lora_scale=custom_lora_weight
94
 
 
183
  use_custom_model = gr.Checkbox(label="Use a public custom model ?(optional)", value=False, info="To use a private model, you'll prefer to duplicate the space with your own access token.")
184
  with gr.Row():
185
  model_name = gr.Textbox(label="Custom Model to use", placeholder="username/my_custom_public_model")
186
+ weight_name = gr.Textbox(label="Specific safetensor", placeholder="specific_weight.safetensors")
187
  custom_lora_weight = gr.Slider(label="Custom model weights", minimum=0.1, maximum=0.9, step=0.1, value=0.9)
188
  submit_btn = gr.Button("Submit")
189
  result = gr.Image(label="Result")
190
 
191
  submit_btn.click(
192
  fn = infer,
193
+ inputs = [use_custom_model, model_name, weight_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, inf_steps, seed],
194
  outputs = [result]
195
  )
196