Spaces:
Running
on
A10G
Running
on
A10G
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,11 @@
|
|
|
|
1 |
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
|
2 |
from diffusers.utils import load_image
|
3 |
from PIL import Image
|
4 |
import torch
|
5 |
import numpy as np
|
6 |
import cv2
|
7 |
-
|
8 |
-
prompt = "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting"
|
9 |
-
negative_prompt = 'low quality, bad quality, sketches'
|
10 |
-
|
11 |
-
image = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png")
|
12 |
-
|
13 |
-
controlnet_conditioning_scale = 0.5 # recommended for good generalization
|
14 |
|
15 |
controlnet = ControlNetModel.from_pretrained(
|
16 |
"diffusers/controlnet-canny-sdxl-1.0",
|
@@ -25,14 +20,39 @@ pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
|
25 |
)
|
26 |
pipe.enable_model_cpu_offload()
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
image =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
37 |
|
38 |
-
|
|
|
1 |
+
import gradio
|
2 |
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
|
3 |
from diffusers.utils import load_image
|
4 |
from PIL import Image
|
5 |
import torch
|
6 |
import numpy as np
|
7 |
import cv2
|
8 |
+
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
controlnet = ControlNetModel.from_pretrained(
|
11 |
"diffusers/controlnet-canny-sdxl-1.0",
|
|
|
20 |
)
|
21 |
pipe.enable_model_cpu_offload()
|
22 |
|
23 |
+
def infer(image_in):
|
24 |
+
prompt = "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting"
|
25 |
+
negative_prompt = 'low quality, bad quality, sketches'
|
26 |
+
|
27 |
+
image = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png")
|
28 |
+
|
29 |
+
controlnet_conditioning_scale = 0.5 # recommended for good generalization
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
image = np.array(image)
|
34 |
+
image = cv2.Canny(image, 100, 200)
|
35 |
+
image = image[:, :, None]
|
36 |
+
image = np.concatenate([image, image, image], axis=2)
|
37 |
+
image = Image.fromarray(image)
|
38 |
+
|
39 |
+
images = pipe(
|
40 |
+
prompt, negative_prompt=negative_prompt, image=image, controlnet_conditioning_scale=controlnet_conditioning_scale,
|
41 |
+
).images
|
42 |
+
|
43 |
+
images[0].save(f"hug_lab.png")
|
44 |
+
|
45 |
+
with gr.Blocks() as demo:
|
46 |
+
with gr.Column():
|
47 |
+
image_in = gr.Image(source="upload", type="filepath")
|
48 |
+
prompt = gr.Textbox(label="Prompt")
|
49 |
+
submit_btn = gr.Button("Submit")
|
50 |
+
result = gr.Image(label="Result")
|
51 |
|
52 |
+
submit_btn.click(
|
53 |
+
fn = infer,
|
54 |
+
inputs = [image_in, prompt],
|
55 |
+
outputs = [result]
|
56 |
+
)
|
57 |
|
58 |
+
demo.queue().launch()
|