File size: 21,260 Bytes
5a510e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
# pylint: disable=C0116
# pylint: disable=W0718
# pylint: disable=R1732
"""
utils.py

This module provides utility functions for various tasks such as setting random seeds,
importing modules from files, managing checkpoint files, and saving video files from 
sequences of PIL images.

Functions:
    seed_everything(seed)
    import_filename(filename)
    delete_additional_ckpt(base_path, num_keep)
    save_videos_from_pil(pil_images, path, fps=8)

Dependencies:
    importlib
    os
    os.path as osp
    random
    shutil
    sys
    pathlib.Path
    av
    cv2
    mediapipe as mp
    numpy as np
    torch
    torchvision
    einops.rearrange
    moviepy.editor.AudioFileClip, VideoClip
    PIL.Image

Examples:
    seed_everything(42)
    imported_module = import_filename('path/to/your/module.py')
    delete_additional_ckpt('path/to/checkpoints', 1)
    save_videos_from_pil(pil_images, 'output/video.mp4', fps=12)

The functions in this module ensure reproducibility of experiments by seeding random number 
generators, allow dynamic importing of modules, manage checkpoint files by deleting extra ones, 
and provide a way to save sequences of images as video files.

Function Details:
    seed_everything(seed)
        Seeds all random number generators to ensure reproducibility.

    import_filename(filename)
        Imports a module from a given file location.

    delete_additional_ckpt(base_path, num_keep)
        Deletes additional checkpoint files in the given directory.

    save_videos_from_pil(pil_images, path, fps=8)
        Saves a sequence of images as a video using the Pillow library.

Attributes:
    _ (str): Placeholder for static type checking
"""

import importlib
import os
import os.path as osp
import random
import shutil
import subprocess
import sys
from pathlib import Path

import av
import cv2
import mediapipe as mp
import numpy as np
import torch
import torchvision
from einops import rearrange
from moviepy.editor import AudioFileClip, VideoClip
from PIL import Image


def seed_everything(seed):
    """
    Seeds all random number generators to ensure reproducibility.

    Args:
        seed (int): The seed value to set for all random number generators.
    """
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    np.random.seed(seed % (2**32))
    random.seed(seed)


def import_filename(filename):
    """
    Import a module from a given file location.

    Args:
        filename (str): The path to the file containing the module to be imported.

    Returns:
        module: The imported module.

    Raises:
        ImportError: If the module cannot be imported.

    Example:
        >>> imported_module = import_filename('path/to/your/module.py')
    """
    spec = importlib.util.spec_from_file_location("mymodule", filename)
    module = importlib.util.module_from_spec(spec)
    sys.modules[spec.name] = module
    spec.loader.exec_module(module)
    return module


def delete_additional_ckpt(base_path, num_keep):
    """
    Deletes additional checkpoint files in the given directory.

    Args:
        base_path (str): The path to the directory containing the checkpoint files.
        num_keep (int): The number of most recent checkpoint files to keep.

    Returns:
        None

    Raises:
        FileNotFoundError: If the base_path does not exist.

    Example:
        >>> delete_additional_ckpt('path/to/checkpoints', 1)
        # This will delete all but the most recent checkpoint file in 'path/to/checkpoints'.
    """
    dirs = []
    for d in os.listdir(base_path):
        if d.startswith("checkpoint-"):
            dirs.append(d)
    num_tot = len(dirs)
    if num_tot <= num_keep:
        return
    # ensure ckpt is sorted and delete the ealier!
    del_dirs = sorted(dirs, key=lambda x: int(
        x.split("-")[-1]))[: num_tot - num_keep]
    for d in del_dirs:
        path_to_dir = osp.join(base_path, d)
        if osp.exists(path_to_dir):
            shutil.rmtree(path_to_dir)


def save_videos_from_pil(pil_images, path, fps=8):
    """
    Save a sequence of images as a video using the Pillow library.

    Args:
        pil_images (List[PIL.Image]): A list of PIL.Image objects representing the frames of the video.
        path (str): The output file path for the video.
        fps (int, optional): The frames per second rate of the video. Defaults to 8.
    
    Returns:
        None
    
    Raises:
        ValueError: If the save format is not supported.

    This function takes a list of PIL.Image objects and saves them as a video file with a specified frame rate.
    The output file format is determined by the file extension of the provided path. Supported formats include
    .mp4, .avi, and .mkv. The function uses the Pillow library to handle the image processing and video
    creation.
    """
    save_fmt = Path(path).suffix
    os.makedirs(os.path.dirname(path), exist_ok=True)
    width, height = pil_images[0].size

    if save_fmt == ".mp4":
        codec = "libx264"
        container = av.open(path, "w")
        stream = container.add_stream(codec, rate=fps)

        stream.width = width
        stream.height = height

        for pil_image in pil_images:
            # pil_image = Image.fromarray(image_arr).convert("RGB")
            av_frame = av.VideoFrame.from_image(pil_image)
            container.mux(stream.encode(av_frame))
        container.mux(stream.encode())
        container.close()

    elif save_fmt == ".gif":
        pil_images[0].save(
            fp=path,
            format="GIF",
            append_images=pil_images[1:],
            save_all=True,
            duration=(1 / fps * 1000),
            loop=0,
        )
    else:
        raise ValueError("Unsupported file type. Use .mp4 or .gif.")


def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8):
    """
    Save a grid of videos as an animation or video.

    Args:
        videos (torch.Tensor): A tensor of shape (batch_size, channels, time, height, width)
            containing the videos to save.
        path (str): The path to save the video grid. Supported formats are .mp4, .avi, and .gif.
        rescale (bool, optional): If True, rescale the video to the original resolution.
            Defaults to False.
        n_rows (int, optional): The number of rows in the video grid. Defaults to 6.
        fps (int, optional): The frame rate of the saved video. Defaults to 8.

    Raises:
        ValueError: If the video format is not supported.

    Returns:
        None
    """
    videos = rearrange(videos, "b c t h w -> t b c h w")
    # height, width = videos.shape[-2:]
    outputs = []

    for x in videos:
        x = torchvision.utils.make_grid(x, nrow=n_rows)  # (c h w)
        x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)  # (h w c)
        if rescale:
            x = (x + 1.0) / 2.0  # -1,1 -> 0,1
        x = (x * 255).numpy().astype(np.uint8)
        x = Image.fromarray(x)

        outputs.append(x)

    os.makedirs(os.path.dirname(path), exist_ok=True)

    save_videos_from_pil(outputs, path, fps)


def read_frames(video_path):
    """
    Reads video frames from a given video file.

    Args:
        video_path (str): The path to the video file.

    Returns:
        container (av.container.InputContainer): The input container object
                                                   containing the video stream.

    Raises:
        FileNotFoundError: If the video file is not found.
        RuntimeError: If there is an error in reading the video stream.

    The function reads the video frames from the specified video file using the
    Python AV library (av). It returns an input container object that contains
    the video stream. If the video file is not found, it raises a FileNotFoundError,
    and if there is an error in reading the video stream, it raises a RuntimeError.
    """
    container = av.open(video_path)

    video_stream = next(s for s in container.streams if s.type == "video")
    frames = []
    for packet in container.demux(video_stream):
        for frame in packet.decode():
            image = Image.frombytes(
                "RGB",
                (frame.width, frame.height),
                frame.to_rgb().to_ndarray(),
            )
            frames.append(image)

    return frames


def get_fps(video_path):
    """
    Get the frame rate (FPS) of a video file.

    Args:
        video_path (str): The path to the video file.

    Returns:
        int: The frame rate (FPS) of the video file.
    """
    container = av.open(video_path)
    video_stream = next(s for s in container.streams if s.type == "video")
    fps = video_stream.average_rate
    container.close()
    return fps


def tensor_to_video(tensor, output_video_file, audio_source, fps=25):
    """
    Converts a Tensor with shape [c, f, h, w] into a video and adds an audio track from the specified audio file.

    Args:
        tensor (Tensor): The Tensor to be converted, shaped [c, f, h, w].
        output_video_file (str): The file path where the output video will be saved.
        audio_source (str): The path to the audio file (WAV file) that contains the audio track to be added.
        fps (int): The frame rate of the output video. Default is 25 fps.
    """
    tensor = tensor.permute(1, 2, 3, 0).cpu(
    ).numpy()  # convert to [f, h, w, c]
    tensor = np.clip(tensor * 255, 0, 255).astype(
        np.uint8
    )  # to [0, 255]

    def make_frame(t):
        # get index
        frame_index = min(int(t * fps), tensor.shape[0] - 1)
        return tensor[frame_index]
    new_video_clip = VideoClip(make_frame, duration=tensor.shape[0] / fps)
    audio_clip = AudioFileClip(audio_source).subclip(0, tensor.shape[0] / fps)
    new_video_clip = new_video_clip.set_audio(audio_clip)
    new_video_clip.write_videofile(output_video_file, fps=fps)


silhouette_ids = [
    10, 338, 297, 332, 284, 251, 389, 356, 454, 323, 361, 288,
    397, 365, 379, 378, 400, 377, 152, 148, 176, 149, 150, 136,
    172, 58, 132, 93, 234, 127, 162, 21, 54, 103, 67, 109
]
lip_ids = [61, 185, 40, 39, 37, 0, 267, 269, 270, 409, 291,
           146, 91, 181, 84, 17, 314, 405, 321, 375]


def compute_face_landmarks(detection_result, h, w):
    """
    Compute face landmarks from a detection result.

    Args:
        detection_result (mediapipe.solutions.face_mesh.FaceMesh): The detection result containing face landmarks.
        h (int): The height of the video frame.
        w (int): The width of the video frame.

    Returns:
        face_landmarks_list (list): A list of face landmarks.
    """
    face_landmarks_list = detection_result.face_landmarks
    if len(face_landmarks_list) != 1:
        print("#face is invalid:", len(face_landmarks_list))
        return []
    return [[p.x * w, p.y * h] for p in face_landmarks_list[0]]


def get_landmark(file):
    """
    This function takes a file as input and returns the facial landmarks detected in the file.

    Args:
        file (str): The path to the file containing the video or image to be processed.

    Returns:
        Tuple[List[float], List[float]]: A tuple containing two lists of floats representing the x and y coordinates of the facial landmarks.
    """
    model_path = "pretrained_models/face_analysis/models/face_landmarker_v2_with_blendshapes.task"
    BaseOptions = mp.tasks.BaseOptions
    FaceLandmarker = mp.tasks.vision.FaceLandmarker
    FaceLandmarkerOptions = mp.tasks.vision.FaceLandmarkerOptions
    VisionRunningMode = mp.tasks.vision.RunningMode
    # Create a face landmarker instance with the video mode:
    options = FaceLandmarkerOptions(
        base_options=BaseOptions(model_asset_path=model_path),
        running_mode=VisionRunningMode.IMAGE,
    )

    with FaceLandmarker.create_from_options(options) as landmarker:
        image = mp.Image.create_from_file(str(file))
        height, width = image.height, image.width
        face_landmarker_result = landmarker.detect(image)
        face_landmark = compute_face_landmarks(
            face_landmarker_result, height, width)

    return np.array(face_landmark), height, width


def get_lip_mask(landmarks, height, width, out_path):
    """
    Extracts the lip region from the given landmarks and saves it as an image.

    Parameters:
        landmarks (numpy.ndarray): Array of facial landmarks.
        height (int): Height of the output lip mask image.
        width (int): Width of the output lip mask image.
        out_path (pathlib.Path): Path to save the lip mask image.
    """
    lip_landmarks = np.take(landmarks, lip_ids, 0)
    min_xy_lip = np.round(np.min(lip_landmarks, 0))
    max_xy_lip = np.round(np.max(lip_landmarks, 0))
    min_xy_lip[0], max_xy_lip[0], min_xy_lip[1], max_xy_lip[1] = expand_region(
        [min_xy_lip[0], max_xy_lip[0], min_xy_lip[1], max_xy_lip[1]], width, height, 2.0)
    lip_mask = np.zeros((height, width), dtype=np.uint8)
    lip_mask[round(min_xy_lip[1]):round(max_xy_lip[1]),
             round(min_xy_lip[0]):round(max_xy_lip[0])] = 255
    cv2.imwrite(str(out_path), lip_mask)


def get_face_mask(landmarks, height, width, out_path, expand_ratio):
    """
    Generate a face mask based on the given landmarks.

    Args:
        landmarks (numpy.ndarray): The landmarks of the face.
        height (int): The height of the output face mask image.
        width (int): The width of the output face mask image.
        out_path (pathlib.Path): The path to save the face mask image.

    Returns:
        None. The face mask image is saved at the specified path.
    """
    face_landmarks = np.take(landmarks, silhouette_ids, 0)
    min_xy_face = np.round(np.min(face_landmarks, 0))
    max_xy_face = np.round(np.max(face_landmarks, 0))
    min_xy_face[0], max_xy_face[0], min_xy_face[1], max_xy_face[1] = expand_region(
        [min_xy_face[0], max_xy_face[0], min_xy_face[1], max_xy_face[1]], width, height, expand_ratio)
    face_mask = np.zeros((height, width), dtype=np.uint8)
    face_mask[round(min_xy_face[1]):round(max_xy_face[1]),
              round(min_xy_face[0]):round(max_xy_face[0])] = 255
    cv2.imwrite(str(out_path), face_mask)


def get_mask(file, cache_dir, face_expand_raio):
    """
    Generate a face mask based on the given landmarks and save it to the specified cache directory.

    Args:
        file (str): The path to the file containing the landmarks.
        cache_dir (str): The directory to save the generated face mask.

    Returns:
        None
    """
    landmarks, height, width = get_landmark(file)
    file_name = os.path.basename(file).split(".")[0]
    get_lip_mask(landmarks, height, width, os.path.join(
        cache_dir, f"{file_name}_lip_mask.png"))
    get_face_mask(landmarks, height, width, os.path.join(
        cache_dir, f"{file_name}_face_mask.png"), face_expand_raio)
    get_blur_mask(os.path.join(
        cache_dir, f"{file_name}_face_mask.png"), os.path.join(
        cache_dir, f"{file_name}_face_mask_blur.png"), kernel_size=(51, 51))
    get_blur_mask(os.path.join(
        cache_dir, f"{file_name}_lip_mask.png"), os.path.join(
        cache_dir, f"{file_name}_sep_lip.png"), kernel_size=(31, 31))
    get_background_mask(os.path.join(
        cache_dir, f"{file_name}_face_mask_blur.png"), os.path.join(
        cache_dir, f"{file_name}_sep_background.png"))
    get_sep_face_mask(os.path.join(
        cache_dir, f"{file_name}_face_mask_blur.png"), os.path.join(
        cache_dir, f"{file_name}_sep_lip.png"), os.path.join(
        cache_dir, f"{file_name}_sep_face.png"))


def expand_region(region, image_w, image_h, expand_ratio=1.0):
    """
    Expand the given region by a specified ratio.
    Args:
        region (tuple): A tuple containing the coordinates (min_x, max_x, min_y, max_y) of the region.
        image_w (int): The width of the image.
        image_h (int): The height of the image.
        expand_ratio (float, optional): The ratio by which the region should be expanded. Defaults to 1.0.

    Returns:
        tuple: A tuple containing the expanded coordinates (min_x, max_x, min_y, max_y) of the region.
    """

    min_x, max_x, min_y, max_y = region
    mid_x = (max_x + min_x) // 2
    side_len_x = (max_x - min_x) * expand_ratio
    mid_y = (max_y + min_y) // 2
    side_len_y = (max_y - min_y) * expand_ratio
    min_x = mid_x - side_len_x // 2
    max_x = mid_x + side_len_x // 2
    min_y = mid_y - side_len_y // 2
    max_y = mid_y + side_len_y // 2
    if min_x < 0:
        max_x -= min_x
        min_x = 0
    if max_x > image_w:
        min_x -= max_x - image_w
        max_x = image_w
    if min_y < 0:
        max_y -= min_y
        min_y = 0
    if max_y > image_h:
        min_y -= max_y - image_h
        max_y = image_h

    return round(min_x), round(max_x), round(min_y), round(max_y)


def get_blur_mask(file_path, output_file_path, resize_dim=(64, 64), kernel_size=(101, 101)):
    """
    Read, resize, blur, normalize, and save an image.

    Parameters:
    file_path (str): Path to the input image file.
    output_dir (str): Path to the output directory to save blurred images.
    resize_dim (tuple): Dimensions to resize the images to.
    kernel_size (tuple): Size of the kernel to use for Gaussian blur.
    """
    # Read the mask image
    mask = cv2.imread(file_path, cv2.IMREAD_GRAYSCALE)

    # Check if the image is loaded successfully
    if mask is not None:
        # Resize the mask image
        resized_mask = cv2.resize(mask, resize_dim)
        # Apply Gaussian blur to the resized mask image
        blurred_mask = cv2.GaussianBlur(resized_mask, kernel_size, 0)
        # Normalize the blurred image
        normalized_mask = cv2.normalize(
            blurred_mask, None, 0, 255, cv2.NORM_MINMAX)
        # Save the normalized mask image
        cv2.imwrite(output_file_path, normalized_mask)
        return f"Processed, normalized, and saved: {output_file_path}"
    return f"Failed to load image: {file_path}"


def get_background_mask(file_path, output_file_path):
    """
    Read an image, invert its values, and save the result.

    Parameters:
    file_path (str): Path to the input image file.
    output_dir (str): Path to the output directory to save the inverted image.
    """
    # Read the image
    image = cv2.imread(file_path, cv2.IMREAD_GRAYSCALE)

    if image is None:
        print(f"Failed to load image: {file_path}")
        return

    # Invert the image
    inverted_image = 1.0 - (
        image / 255.0
    )  # Assuming the image values are in [0, 255] range
    # Convert back to uint8
    inverted_image = (inverted_image * 255).astype(np.uint8)

    # Save the inverted image
    cv2.imwrite(output_file_path, inverted_image)
    print(f"Processed and saved: {output_file_path}")


def get_sep_face_mask(file_path1, file_path2, output_file_path):
    """
    Read two images, subtract the second one from the first, and save the result.

    Parameters:
    output_dir (str): Path to the output directory to save the subtracted image.
    """

    # Read the images
    mask1 = cv2.imread(file_path1, cv2.IMREAD_GRAYSCALE)
    mask2 = cv2.imread(file_path2, cv2.IMREAD_GRAYSCALE)

    if mask1 is None or mask2 is None:
        print(f"Failed to load images: {file_path1}")
        return

    # Ensure the images are the same size
    if mask1.shape != mask2.shape:
        print(
            f"Image shapes do not match for {file_path1}: {mask1.shape} vs {mask2.shape}"
        )
        return

    # Subtract the second mask from the first
    result_mask = cv2.subtract(mask1, mask2)

    # Save the result mask image
    cv2.imwrite(output_file_path, result_mask)
    print(f"Processed and saved: {output_file_path}")

def resample_audio(input_audio_file: str, output_audio_file: str, sample_rate: int):
    p = subprocess.Popen([
        "ffmpeg", "-y", "-v", "error", "-i", input_audio_file, "-ar", str(sample_rate), output_audio_file
    ])
    ret = p.wait()
    assert ret == 0, "Resample audio failed!"
    return output_audio_file

def get_face_region(image_path: str, detector):
    try:
        image = cv2.imread(image_path)
        if image is None:
            print(f"Failed to open image: {image_path}. Skipping...")
            return None, None

        mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=image)
        detection_result = detector.detect(mp_image)

        # Adjust mask creation for the three-channel image
        mask = np.zeros_like(image, dtype=np.uint8)

        for detection in detection_result.detections:
            bbox = detection.bounding_box
            start_point = (int(bbox.origin_x), int(bbox.origin_y))
            end_point = (int(bbox.origin_x + bbox.width),
                         int(bbox.origin_y + bbox.height))
            cv2.rectangle(mask, start_point, end_point,
                          (255, 255, 255), thickness=-1)

        save_path = image_path.replace("images", "face_masks")
        os.makedirs(os.path.dirname(save_path), exist_ok=True)
        cv2.imwrite(save_path, mask)
        # print(f"Processed and saved {save_path}")
        return image_path, mask
    except Exception as e:
        print(f"Error processing image {image_path}: {e}")
        return None, None