Spaces:
Running
on
A10G
Running
on
A10G
# pylint: disable=R0801 | |
# pylint: disable=C0303 | |
""" | |
This module contains various transformer blocks for different applications, such as BasicTransformerBlock, | |
TemporalBasicTransformerBlock, and AudioTemporalBasicTransformerBlock. These blocks are used in various models, | |
such as GLIGEN, UNet, and others. The transformer blocks implement self-attention, cross-attention, feed-forward | |
networks, and other related functions. | |
Functions and classes included in this module are: | |
- BasicTransformerBlock: A basic transformer block with self-attention, cross-attention, and feed-forward layers. | |
- TemporalBasicTransformerBlock: A transformer block with additional temporal attention mechanisms for video data. | |
- AudioTemporalBasicTransformerBlock: A transformer block with additional audio-specific mechanisms for audio data. | |
- zero_module: A function to zero out the parameters of a given module. | |
For more information on each specific class and function, please refer to the respective docstrings. | |
""" | |
from typing import Any, Dict, List, Optional | |
import torch | |
from diffusers.models.attention import (AdaLayerNorm, AdaLayerNormZero, | |
Attention, FeedForward) | |
from diffusers.models.embeddings import SinusoidalPositionalEmbedding | |
from einops import rearrange | |
from torch import nn | |
class GatedSelfAttentionDense(nn.Module): | |
""" | |
A gated self-attention dense layer that combines visual features and object features. | |
Parameters: | |
query_dim (`int`): The number of channels in the query. | |
context_dim (`int`): The number of channels in the context. | |
n_heads (`int`): The number of heads to use for attention. | |
d_head (`int`): The number of channels in each head. | |
""" | |
def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int): | |
super().__init__() | |
# we need a linear projection since we need cat visual feature and obj feature | |
self.linear = nn.Linear(context_dim, query_dim) | |
self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head) | |
self.ff = FeedForward(query_dim, activation_fn="geglu") | |
self.norm1 = nn.LayerNorm(query_dim) | |
self.norm2 = nn.LayerNorm(query_dim) | |
self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0))) | |
self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0))) | |
self.enabled = True | |
def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor: | |
""" | |
Apply the Gated Self-Attention mechanism to the input tensor `x` and object tensor `objs`. | |
Args: | |
x (torch.Tensor): The input tensor. | |
objs (torch.Tensor): The object tensor. | |
Returns: | |
torch.Tensor: The output tensor after applying Gated Self-Attention. | |
""" | |
if not self.enabled: | |
return x | |
n_visual = x.shape[1] | |
objs = self.linear(objs) | |
x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :] | |
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x)) | |
return x | |
class BasicTransformerBlock(nn.Module): | |
r""" | |
A basic Transformer block. | |
Parameters: | |
dim (`int`): The number of channels in the input and output. | |
num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): The number of channels in each head. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
num_embeds_ada_norm (: | |
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. | |
attention_bias (: | |
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. | |
only_cross_attention (`bool`, *optional*): | |
Whether to use only cross-attention layers. In this case two cross attention layers are used. | |
double_self_attention (`bool`, *optional*): | |
Whether to use two self-attention layers. In this case no cross attention layers are used. | |
upcast_attention (`bool`, *optional*): | |
Whether to upcast the attention computation to float32. This is useful for mixed precision training. | |
norm_elementwise_affine (`bool`, *optional*, defaults to `True`): | |
Whether to use learnable elementwise affine parameters for normalization. | |
norm_type (`str`, *optional*, defaults to `"layer_norm"`): | |
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`. | |
final_dropout (`bool` *optional*, defaults to False): | |
Whether to apply a final dropout after the last feed-forward layer. | |
attention_type (`str`, *optional*, defaults to `"default"`): | |
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`. | |
positional_embeddings (`str`, *optional*, defaults to `None`): | |
The type of positional embeddings to apply to. | |
num_positional_embeddings (`int`, *optional*, defaults to `None`): | |
The maximum number of positional embeddings to apply. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout=0.0, | |
cross_attention_dim: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
attention_bias: bool = False, | |
only_cross_attention: bool = False, | |
double_self_attention: bool = False, | |
upcast_attention: bool = False, | |
norm_elementwise_affine: bool = True, | |
# 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single' | |
norm_type: str = "layer_norm", | |
norm_eps: float = 1e-5, | |
final_dropout: bool = False, | |
attention_type: str = "default", | |
positional_embeddings: Optional[str] = None, | |
num_positional_embeddings: Optional[int] = None, | |
): | |
super().__init__() | |
self.only_cross_attention = only_cross_attention | |
self.use_ada_layer_norm_zero = ( | |
num_embeds_ada_norm is not None | |
) and norm_type == "ada_norm_zero" | |
self.use_ada_layer_norm = ( | |
num_embeds_ada_norm is not None | |
) and norm_type == "ada_norm" | |
self.use_ada_layer_norm_single = norm_type == "ada_norm_single" | |
self.use_layer_norm = norm_type == "layer_norm" | |
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: | |
raise ValueError( | |
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" | |
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." | |
) | |
if positional_embeddings and (num_positional_embeddings is None): | |
raise ValueError( | |
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined." | |
) | |
if positional_embeddings == "sinusoidal": | |
self.pos_embed = SinusoidalPositionalEmbedding( | |
dim, max_seq_length=num_positional_embeddings | |
) | |
else: | |
self.pos_embed = None | |
# Define 3 blocks. Each block has its own normalization layer. | |
# 1. Self-Attn | |
if self.use_ada_layer_norm: | |
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) | |
elif self.use_ada_layer_norm_zero: | |
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) | |
else: | |
self.norm1 = nn.LayerNorm( | |
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps | |
) | |
self.attn1 = Attention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
upcast_attention=upcast_attention, | |
) | |
# 2. Cross-Attn | |
if cross_attention_dim is not None or double_self_attention: | |
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block. | |
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during | |
# the second cross attention block. | |
self.norm2 = ( | |
AdaLayerNorm(dim, num_embeds_ada_norm) | |
if self.use_ada_layer_norm | |
else nn.LayerNorm( | |
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps | |
) | |
) | |
self.attn2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=( | |
cross_attention_dim if not double_self_attention else None | |
), | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
) # is self-attn if encoder_hidden_states is none | |
else: | |
self.norm2 = None | |
self.attn2 = None | |
# 3. Feed-forward | |
if not self.use_ada_layer_norm_single: | |
self.norm3 = nn.LayerNorm( | |
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps | |
) | |
self.ff = FeedForward( | |
dim, | |
dropout=dropout, | |
activation_fn=activation_fn, | |
final_dropout=final_dropout, | |
) | |
# 4. Fuser | |
if attention_type in {"gated", "gated-text-image"}: # Updated line | |
self.fuser = GatedSelfAttentionDense( | |
dim, cross_attention_dim, num_attention_heads, attention_head_dim | |
) | |
# 5. Scale-shift for PixArt-Alpha. | |
if self.use_ada_layer_norm_single: | |
self.scale_shift_table = nn.Parameter( | |
torch.randn(6, dim) / dim**0.5) | |
# let chunk size default to None | |
self._chunk_size = None | |
self._chunk_dim = 0 | |
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): | |
""" | |
Sets the chunk size for feed-forward processing in the transformer block. | |
Args: | |
chunk_size (Optional[int]): The size of the chunks to process in feed-forward layers. | |
If None, the chunk size is set to the maximum possible value. | |
dim (int, optional): The dimension along which to split the input tensor into chunks. Defaults to 0. | |
Returns: | |
None. | |
""" | |
self._chunk_size = chunk_size | |
self._chunk_dim = dim | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
timestep: Optional[torch.LongTensor] = None, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
class_labels: Optional[torch.LongTensor] = None, | |
) -> torch.FloatTensor: | |
""" | |
This function defines the forward pass of the BasicTransformerBlock. | |
Args: | |
self (BasicTransformerBlock): | |
An instance of the BasicTransformerBlock class. | |
hidden_states (torch.FloatTensor): | |
A tensor containing the hidden states. | |
attention_mask (Optional[torch.FloatTensor], optional): | |
A tensor containing the attention mask. Defaults to None. | |
encoder_hidden_states (Optional[torch.FloatTensor], optional): | |
A tensor containing the encoder hidden states. Defaults to None. | |
encoder_attention_mask (Optional[torch.FloatTensor], optional): | |
A tensor containing the encoder attention mask. Defaults to None. | |
timestep (Optional[torch.LongTensor], optional): | |
A tensor containing the timesteps. Defaults to None. | |
cross_attention_kwargs (Dict[str, Any], optional): | |
Additional cross-attention arguments. Defaults to None. | |
class_labels (Optional[torch.LongTensor], optional): | |
A tensor containing the class labels. Defaults to None. | |
Returns: | |
torch.FloatTensor: | |
A tensor containing the transformed hidden states. | |
""" | |
# Notice that normalization is always applied before the real computation in the following blocks. | |
# 0. Self-Attention | |
batch_size = hidden_states.shape[0] | |
gate_msa = None | |
scale_mlp = None | |
shift_mlp = None | |
gate_mlp = None | |
if self.use_ada_layer_norm: | |
norm_hidden_states = self.norm1(hidden_states, timestep) | |
elif self.use_ada_layer_norm_zero: | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( | |
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype | |
) | |
elif self.use_layer_norm: | |
norm_hidden_states = self.norm1(hidden_states) | |
elif self.use_ada_layer_norm_single: | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( | |
self.scale_shift_table[None] + | |
timestep.reshape(batch_size, 6, -1) | |
).chunk(6, dim=1) | |
norm_hidden_states = self.norm1(hidden_states) | |
norm_hidden_states = norm_hidden_states * \ | |
(1 + scale_msa) + shift_msa | |
norm_hidden_states = norm_hidden_states.squeeze(1) | |
else: | |
raise ValueError("Incorrect norm used") | |
if self.pos_embed is not None: | |
norm_hidden_states = self.pos_embed(norm_hidden_states) | |
# 1. Retrieve lora scale. | |
lora_scale = ( | |
cross_attention_kwargs.get("scale", 1.0) | |
if cross_attention_kwargs is not None | |
else 1.0 | |
) | |
# 2. Prepare GLIGEN inputs | |
cross_attention_kwargs = ( | |
cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} | |
) | |
gligen_kwargs = cross_attention_kwargs.pop("gligen", None) | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=( | |
encoder_hidden_states if self.only_cross_attention else None | |
), | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
if self.use_ada_layer_norm_zero: | |
attn_output = gate_msa.unsqueeze(1) * attn_output | |
elif self.use_ada_layer_norm_single: | |
attn_output = gate_msa * attn_output | |
hidden_states = attn_output + hidden_states | |
if hidden_states.ndim == 4: | |
hidden_states = hidden_states.squeeze(1) | |
# 2.5 GLIGEN Control | |
if gligen_kwargs is not None: | |
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"]) | |
# 3. Cross-Attention | |
if self.attn2 is not None: | |
if self.use_ada_layer_norm: | |
norm_hidden_states = self.norm2(hidden_states, timestep) | |
elif self.use_ada_layer_norm_zero or self.use_layer_norm: | |
norm_hidden_states = self.norm2(hidden_states) | |
elif self.use_ada_layer_norm_single: | |
# For PixArt norm2 isn't applied here: | |
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103 | |
norm_hidden_states = hidden_states | |
else: | |
raise ValueError("Incorrect norm") | |
if self.pos_embed is not None and self.use_ada_layer_norm_single is False: | |
norm_hidden_states = self.pos_embed(norm_hidden_states) | |
attn_output = self.attn2( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
**cross_attention_kwargs, | |
) | |
hidden_states = attn_output + hidden_states | |
# 4. Feed-forward | |
if not self.use_ada_layer_norm_single: | |
norm_hidden_states = self.norm3(hidden_states) | |
if self.use_ada_layer_norm_zero: | |
norm_hidden_states = ( | |
norm_hidden_states * | |
(1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
) | |
if self.use_ada_layer_norm_single: | |
norm_hidden_states = self.norm2(hidden_states) | |
norm_hidden_states = norm_hidden_states * \ | |
(1 + scale_mlp) + shift_mlp | |
ff_output = self.ff(norm_hidden_states, scale=lora_scale) | |
if self.use_ada_layer_norm_zero: | |
ff_output = gate_mlp.unsqueeze(1) * ff_output | |
elif self.use_ada_layer_norm_single: | |
ff_output = gate_mlp * ff_output | |
hidden_states = ff_output + hidden_states | |
if hidden_states.ndim == 4: | |
hidden_states = hidden_states.squeeze(1) | |
return hidden_states | |
class TemporalBasicTransformerBlock(nn.Module): | |
""" | |
A PyTorch module that extends the BasicTransformerBlock to include temporal attention mechanisms. | |
This class is particularly useful for video-related tasks where capturing temporal information within the sequence of frames is necessary. | |
Attributes: | |
dim (int): The dimension of the input and output embeddings. | |
num_attention_heads (int): The number of attention heads in the multi-head self-attention mechanism. | |
attention_head_dim (int): The dimension of each attention head. | |
dropout (float): The dropout probability for the attention scores. | |
cross_attention_dim (Optional[int]): The dimension of the cross-attention mechanism. | |
activation_fn (str): The activation function used in the feed-forward layer. | |
num_embeds_ada_norm (Optional[int]): The number of embeddings for adaptive normalization. | |
attention_bias (bool): If True, uses bias in the attention mechanism. | |
only_cross_attention (bool): If True, only uses cross-attention. | |
upcast_attention (bool): If True, upcasts the attention mechanism for better performance. | |
unet_use_cross_frame_attention (Optional[bool]): If True, uses cross-frame attention in the UNet model. | |
unet_use_temporal_attention (Optional[bool]): If True, uses temporal attention in the UNet model. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout=0.0, | |
cross_attention_dim: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
attention_bias: bool = False, | |
only_cross_attention: bool = False, | |
upcast_attention: bool = False, | |
unet_use_cross_frame_attention=None, | |
unet_use_temporal_attention=None, | |
): | |
""" | |
The TemporalBasicTransformerBlock class is a PyTorch module that extends the BasicTransformerBlock to include temporal attention mechanisms. | |
This is particularly useful for video-related tasks, where the model needs to capture the temporal information within the sequence of frames. | |
The block consists of self-attention, cross-attention, feed-forward, and temporal attention mechanisms. | |
dim (int): The dimension of the input and output embeddings. | |
num_attention_heads (int): The number of attention heads in the multi-head self-attention mechanism. | |
attention_head_dim (int): The dimension of each attention head. | |
dropout (float, optional): The dropout probability for the attention scores. Defaults to 0.0. | |
cross_attention_dim (int, optional): The dimension of the cross-attention mechanism. Defaults to None. | |
activation_fn (str, optional): The activation function used in the feed-forward layer. Defaults to "geglu". | |
num_embeds_ada_norm (int, optional): The number of embeddings for adaptive normalization. Defaults to None. | |
attention_bias (bool, optional): If True, uses bias in the attention mechanism. Defaults to False. | |
only_cross_attention (bool, optional): If True, only uses cross-attention. Defaults to False. | |
upcast_attention (bool, optional): If True, upcasts the attention mechanism for better performance. Defaults to False. | |
unet_use_cross_frame_attention (bool, optional): If True, uses cross-frame attention in the UNet model. Defaults to None. | |
unet_use_temporal_attention (bool, optional): If True, uses temporal attention in the UNet model. Defaults to None. | |
Forward method: | |
hidden_states (torch.FloatTensor): The input hidden states. | |
encoder_hidden_states (torch.FloatTensor, optional): The encoder hidden states. Defaults to None. | |
timestep (torch.LongTensor, optional): The current timestep for the transformer model. Defaults to None. | |
attention_mask (torch.FloatTensor, optional): The attention mask for the self-attention mechanism. Defaults to None. | |
video_length (int, optional): The length of the video sequence. Defaults to None. | |
Returns: | |
torch.FloatTensor: The output hidden states after passing through the TemporalBasicTransformerBlock. | |
""" | |
super().__init__() | |
self.only_cross_attention = only_cross_attention | |
self.use_ada_layer_norm = num_embeds_ada_norm is not None | |
self.unet_use_cross_frame_attention = unet_use_cross_frame_attention | |
self.unet_use_temporal_attention = unet_use_temporal_attention | |
# SC-Attn | |
self.attn1 = Attention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
) | |
self.norm1 = ( | |
AdaLayerNorm(dim, num_embeds_ada_norm) | |
if self.use_ada_layer_norm | |
else nn.LayerNorm(dim) | |
) | |
# Cross-Attn | |
if cross_attention_dim is not None: | |
self.attn2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
) | |
else: | |
self.attn2 = None | |
if cross_attention_dim is not None: | |
self.norm2 = ( | |
AdaLayerNorm(dim, num_embeds_ada_norm) | |
if self.use_ada_layer_norm | |
else nn.LayerNorm(dim) | |
) | |
else: | |
self.norm2 = None | |
# Feed-forward | |
self.ff = FeedForward(dim, dropout=dropout, | |
activation_fn=activation_fn) | |
self.norm3 = nn.LayerNorm(dim) | |
self.use_ada_layer_norm_zero = False | |
# Temp-Attn | |
# assert unet_use_temporal_attention is not None | |
if unet_use_temporal_attention is None: | |
unet_use_temporal_attention = False | |
if unet_use_temporal_attention: | |
self.attn_temp = Attention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
) | |
nn.init.zeros_(self.attn_temp.to_out[0].weight.data) | |
self.norm_temp = ( | |
AdaLayerNorm(dim, num_embeds_ada_norm) | |
if self.use_ada_layer_norm | |
else nn.LayerNorm(dim) | |
) | |
def forward( | |
self, | |
hidden_states, | |
encoder_hidden_states=None, | |
timestep=None, | |
attention_mask=None, | |
video_length=None, | |
): | |
""" | |
Forward pass for the TemporalBasicTransformerBlock. | |
Args: | |
hidden_states (torch.FloatTensor): The input hidden states with shape (batch_size, seq_len, dim). | |
encoder_hidden_states (torch.FloatTensor, optional): The encoder hidden states with shape (batch_size, src_seq_len, dim). | |
timestep (torch.LongTensor, optional): The timestep for the transformer block. | |
attention_mask (torch.FloatTensor, optional): The attention mask with shape (batch_size, seq_len, seq_len). | |
video_length (int, optional): The length of the video sequence. | |
Returns: | |
torch.FloatTensor: The output tensor after passing through the transformer block with shape (batch_size, seq_len, dim). | |
""" | |
norm_hidden_states = ( | |
self.norm1(hidden_states, timestep) | |
if self.use_ada_layer_norm | |
else self.norm1(hidden_states) | |
) | |
if self.unet_use_cross_frame_attention: | |
hidden_states = ( | |
self.attn1( | |
norm_hidden_states, | |
attention_mask=attention_mask, | |
video_length=video_length, | |
) | |
+ hidden_states | |
) | |
else: | |
hidden_states = ( | |
self.attn1(norm_hidden_states, attention_mask=attention_mask) | |
+ hidden_states | |
) | |
if self.attn2 is not None: | |
# Cross-Attention | |
norm_hidden_states = ( | |
self.norm2(hidden_states, timestep) | |
if self.use_ada_layer_norm | |
else self.norm2(hidden_states) | |
) | |
hidden_states = ( | |
self.attn2( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
) | |
+ hidden_states | |
) | |
# Feed-forward | |
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states | |
# Temporal-Attention | |
if self.unet_use_temporal_attention: | |
d = hidden_states.shape[1] | |
hidden_states = rearrange( | |
hidden_states, "(b f) d c -> (b d) f c", f=video_length | |
) | |
norm_hidden_states = ( | |
self.norm_temp(hidden_states, timestep) | |
if self.use_ada_layer_norm | |
else self.norm_temp(hidden_states) | |
) | |
hidden_states = self.attn_temp(norm_hidden_states) + hidden_states | |
hidden_states = rearrange( | |
hidden_states, "(b d) f c -> (b f) d c", d=d) | |
return hidden_states | |
class AudioTemporalBasicTransformerBlock(nn.Module): | |
""" | |
A PyTorch module designed to handle audio data within a transformer framework, including temporal attention mechanisms. | |
Attributes: | |
dim (int): The dimension of the input and output embeddings. | |
num_attention_heads (int): The number of attention heads. | |
attention_head_dim (int): The dimension of each attention head. | |
dropout (float): The dropout probability. | |
cross_attention_dim (Optional[int]): The dimension of the cross-attention mechanism. | |
activation_fn (str): The activation function for the feed-forward network. | |
num_embeds_ada_norm (Optional[int]): The number of embeddings for adaptive normalization. | |
attention_bias (bool): If True, uses bias in the attention mechanism. | |
only_cross_attention (bool): If True, only uses cross-attention. | |
upcast_attention (bool): If True, upcasts the attention mechanism to float32. | |
unet_use_cross_frame_attention (Optional[bool]): If True, uses cross-frame attention in UNet. | |
unet_use_temporal_attention (Optional[bool]): If True, uses temporal attention in UNet. | |
depth (int): The depth of the transformer block. | |
unet_block_name (Optional[str]): The name of the UNet block. | |
stack_enable_blocks_name (Optional[List[str]]): The list of enabled blocks in the stack. | |
stack_enable_blocks_depth (Optional[List[int]]): The list of depths for the enabled blocks in the stack. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout=0.0, | |
cross_attention_dim: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
attention_bias: bool = False, | |
only_cross_attention: bool = False, | |
upcast_attention: bool = False, | |
unet_use_cross_frame_attention=None, | |
unet_use_temporal_attention=None, | |
depth=0, | |
unet_block_name=None, | |
stack_enable_blocks_name: Optional[List[str]] = None, | |
stack_enable_blocks_depth: Optional[List[int]] = None, | |
): | |
""" | |
Initializes the AudioTemporalBasicTransformerBlock module. | |
Args: | |
dim (int): The dimension of the input and output embeddings. | |
num_attention_heads (int): The number of attention heads in the multi-head self-attention mechanism. | |
attention_head_dim (int): The dimension of each attention head. | |
dropout (float, optional): The dropout probability for the attention mechanism. Defaults to 0.0. | |
cross_attention_dim (Optional[int], optional): The dimension of the cross-attention mechanism. Defaults to None. | |
activation_fn (str, optional): The activation function to be used in the feed-forward network. Defaults to "geglu". | |
num_embeds_ada_norm (Optional[int], optional): The number of embeddings for adaptive normalization. Defaults to None. | |
attention_bias (bool, optional): If True, uses bias in the attention mechanism. Defaults to False. | |
only_cross_attention (bool, optional): If True, only uses cross-attention. Defaults to False. | |
upcast_attention (bool, optional): If True, upcasts the attention mechanism to float32. Defaults to False. | |
unet_use_cross_frame_attention (Optional[bool], optional): If True, uses cross-frame attention in UNet. Defaults to None. | |
unet_use_temporal_attention (Optional[bool], optional): If True, uses temporal attention in UNet. Defaults to None. | |
depth (int, optional): The depth of the transformer block. Defaults to 0. | |
unet_block_name (Optional[str], optional): The name of the UNet block. Defaults to None. | |
stack_enable_blocks_name (Optional[List[str]], optional): The list of enabled blocks in the stack. Defaults to None. | |
stack_enable_blocks_depth (Optional[List[int]], optional): The list of depths for the enabled blocks in the stack. Defaults to None. | |
""" | |
super().__init__() | |
self.only_cross_attention = only_cross_attention | |
self.use_ada_layer_norm = num_embeds_ada_norm is not None | |
self.unet_use_cross_frame_attention = unet_use_cross_frame_attention | |
self.unet_use_temporal_attention = unet_use_temporal_attention | |
self.unet_block_name = unet_block_name | |
self.depth = depth | |
zero_conv_full = nn.Conv2d( | |
dim, dim, kernel_size=1) | |
self.zero_conv_full = zero_module(zero_conv_full) | |
zero_conv_face = nn.Conv2d( | |
dim, dim, kernel_size=1) | |
self.zero_conv_face = zero_module(zero_conv_face) | |
zero_conv_lip = nn.Conv2d( | |
dim, dim, kernel_size=1) | |
self.zero_conv_lip = zero_module(zero_conv_lip) | |
# SC-Attn | |
self.attn1 = Attention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
) | |
self.norm1 = ( | |
AdaLayerNorm(dim, num_embeds_ada_norm) | |
if self.use_ada_layer_norm | |
else nn.LayerNorm(dim) | |
) | |
# Cross-Attn | |
if cross_attention_dim is not None: | |
if (stack_enable_blocks_name is not None and | |
stack_enable_blocks_depth is not None and | |
self.unet_block_name in stack_enable_blocks_name and | |
self.depth in stack_enable_blocks_depth): | |
self.attn2_0 = Attention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
) | |
self.attn2_1 = Attention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
) | |
self.attn2_2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
) | |
self.attn2 = None | |
else: | |
self.attn2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
) | |
self.attn2_0=None | |
else: | |
self.attn2 = None | |
self.attn2_0 = None | |
if cross_attention_dim is not None: | |
self.norm2 = ( | |
AdaLayerNorm(dim, num_embeds_ada_norm) | |
if self.use_ada_layer_norm | |
else nn.LayerNorm(dim) | |
) | |
else: | |
self.norm2 = None | |
# Feed-forward | |
self.ff = FeedForward(dim, dropout=dropout, | |
activation_fn=activation_fn) | |
self.norm3 = nn.LayerNorm(dim) | |
self.use_ada_layer_norm_zero = False | |
def forward( | |
self, | |
hidden_states, | |
encoder_hidden_states=None, | |
timestep=None, | |
attention_mask=None, | |
full_mask=None, | |
face_mask=None, | |
lip_mask=None, | |
motion_scale=None, | |
video_length=None, | |
): | |
""" | |
Forward pass for the AudioTemporalBasicTransformerBlock. | |
Args: | |
hidden_states (torch.FloatTensor): The input hidden states. | |
encoder_hidden_states (torch.FloatTensor, optional): The encoder hidden states. Defaults to None. | |
timestep (torch.LongTensor, optional): The timestep for the transformer block. Defaults to None. | |
attention_mask (torch.FloatTensor, optional): The attention mask. Defaults to None. | |
full_mask (torch.FloatTensor, optional): The full mask. Defaults to None. | |
face_mask (torch.FloatTensor, optional): The face mask. Defaults to None. | |
lip_mask (torch.FloatTensor, optional): The lip mask. Defaults to None. | |
video_length (int, optional): The length of the video. Defaults to None. | |
Returns: | |
torch.FloatTensor: The output tensor after passing through the AudioTemporalBasicTransformerBlock. | |
""" | |
norm_hidden_states = ( | |
self.norm1(hidden_states, timestep) | |
if self.use_ada_layer_norm | |
else self.norm1(hidden_states) | |
) | |
if self.unet_use_cross_frame_attention: | |
hidden_states = ( | |
self.attn1( | |
norm_hidden_states, | |
attention_mask=attention_mask, | |
video_length=video_length, | |
) | |
+ hidden_states | |
) | |
else: | |
hidden_states = ( | |
self.attn1(norm_hidden_states, attention_mask=attention_mask) | |
+ hidden_states | |
) | |
if self.attn2 is not None: | |
# Cross-Attention | |
norm_hidden_states = ( | |
self.norm2(hidden_states, timestep) | |
if self.use_ada_layer_norm | |
else self.norm2(hidden_states) | |
) | |
hidden_states = self.attn2( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
) + hidden_states | |
elif self.attn2_0 is not None: | |
norm_hidden_states = ( | |
self.norm2(hidden_states, timestep) | |
if self.use_ada_layer_norm | |
else self.norm2(hidden_states) | |
) | |
level = self.depth | |
full_hidden_states = ( | |
self.attn2_0( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
) * full_mask[level][:, :, None] | |
) | |
bz, sz, c = full_hidden_states.shape | |
sz_sqrt = int(sz ** 0.5) | |
full_hidden_states = full_hidden_states.reshape( | |
bz, sz_sqrt, sz_sqrt, c).permute(0, 3, 1, 2) | |
full_hidden_states = self.zero_conv_full(full_hidden_states).permute(0, 2, 3, 1).reshape(bz, -1, c) | |
face_hidden_state = ( | |
self.attn2_1( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
) * face_mask[level][:, :, None] | |
) | |
face_hidden_state = face_hidden_state.reshape( | |
bz, sz_sqrt, sz_sqrt, c).permute(0, 3, 1, 2) | |
face_hidden_state = self.zero_conv_face( | |
face_hidden_state).permute(0, 2, 3, 1).reshape(bz, -1, c) | |
lip_hidden_state = ( | |
self.attn2_2( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
) * lip_mask[level][:, :, None] | |
) # [32, 4096, 320] | |
lip_hidden_state = lip_hidden_state.reshape( | |
bz, sz_sqrt, sz_sqrt, c).permute(0, 3, 1, 2) | |
lip_hidden_state = self.zero_conv_lip( | |
lip_hidden_state).permute(0, 2, 3, 1).reshape(bz, -1, c) | |
if motion_scale is not None: | |
hidden_states = ( | |
motion_scale[0] * full_hidden_states + | |
motion_scale[1] * face_hidden_state + | |
motion_scale[2] * lip_hidden_state + hidden_states | |
) | |
else: | |
hidden_states = ( | |
full_hidden_states + | |
face_hidden_state + | |
lip_hidden_state + hidden_states | |
) | |
# Feed-forward | |
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states | |
return hidden_states | |
def zero_module(module): | |
""" | |
Zeroes out the parameters of a given module. | |
Args: | |
module (nn.Module): The module whose parameters need to be zeroed out. | |
Returns: | |
None. | |
""" | |
for p in module.parameters(): | |
nn.init.zeros_(p) | |
return module | |