|
|
""" |
|
|
Hugging Face Wan2.2 Text-to-Video Application |
|
|
A comprehensive text-to-video generation app using Wan2.2-S2V-14B model |
|
|
""" |
|
|
|
|
|
import os |
|
|
import torch |
|
|
import numpy as np |
|
|
import cv2 |
|
|
from PIL import Image |
|
|
from moviepy.editor import VideoFileClip, ImageSequenceClip |
|
|
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler |
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
from huggingface_hub import hf_hub_download |
|
|
import gradio as gr |
|
|
from tqdm import tqdm |
|
|
import yaml |
|
|
import json |
|
|
import logging |
|
|
from datetime import datetime |
|
|
import threading |
|
|
import queue |
|
|
import multiprocessing |
|
|
from typing import List, Dict, Any, Optional |
|
|
from dataclasses import dataclass |
|
|
from enum import Enum |
|
|
import hashlib |
|
|
import base64 |
|
|
from io import BytesIO |
|
|
import tempfile |
|
|
import shutil |
|
|
import subprocess |
|
|
import sys |
|
|
import signal |
|
|
import psutil |
|
|
import gc |
|
|
|
|
|
|
|
|
class Config: |
|
|
"""Application configuration class""" |
|
|
|
|
|
MODEL_NAME = "Wan-AI/Wan2.2-S2V-14B" |
|
|
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
MAX_VIDEO_LENGTH = 60 |
|
|
DEFAULT_FRAME_RATE = 24 |
|
|
MAX_INPUT_LENGTH = 512 |
|
|
BATCH_SIZE = 4 |
|
|
NUM_INFERENCE_STEPS = 50 |
|
|
GUIDANCE_SCALE = 7.5 |
|
|
NEGATIVE_PROMPT = "blurry, low quality, distorted, ugly" |
|
|
|
|
|
|
|
|
CACHE_DIR = "./cache" |
|
|
MAX_CACHE_SIZE = 100 |
|
|
|
|
|
|
|
|
LOG_LEVEL = logging.INFO |
|
|
LOG_FILE = "app.log" |
|
|
|
|
|
|
|
|
THEME = "huggingface" |
|
|
DEFAULT_WIDTH = 800 |
|
|
DEFAULT_HEIGHT = 600 |
|
|
|
|
|
|
|
|
@dataclass |
|
|
class VideoFrame: |
|
|
"""Represents a single video frame""" |
|
|
image: np.ndarray |
|
|
timestamp: float |
|
|
metadata: Dict[str, Any] |
|
|
|
|
|
@dataclass |
|
|
class VideoGenerationParams: |
|
|
"""Parameters for video generation""" |
|
|
prompt: str |
|
|
negative_prompt: str |
|
|
duration: int |
|
|
frame_rate: int |
|
|
width: int |
|
|
height: int |
|
|
guidance_scale: float |
|
|
num_inference_steps: int |
|
|
seed: int |
|
|
|
|
|
class VideoQuality(Enum): |
|
|
"""Video quality presets""" |
|
|
LOW = "low" |
|
|
MEDIUM = "medium" |
|
|
HIGH = "high" |
|
|
ULTRA = "ultra" |
|
|
|
|
|
|
|
|
class Logger: |
|
|
"""Custom logging class""" |
|
|
|
|
|
def __init__(self): |
|
|
self.setup_logging() |
|
|
|
|
|
def setup_logging(self): |
|
|
"""Setup logging configuration""" |
|
|
logging.basicConfig( |
|
|
level=Config.LOG_LEVEL, |
|
|
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', |
|
|
handlers=[ |
|
|
logging.FileHandler(Config.LOG_FILE), |
|
|
logging.StreamHandler() |
|
|
] |
|
|
) |
|
|
self.logger = logging.getLogger("Wan2App") |
|
|
|
|
|
def info(self, message: str): |
|
|
self.logger.info(message) |
|
|
|
|
|
def warning(self, message: str): |
|
|
self.logger.warning(message) |
|
|
|
|
|
def error(self, message: str): |
|
|
self.logger.error(message) |
|
|
|
|
|
def debug(self, message: str): |
|
|
self.logger.debug(message) |
|
|
|
|
|
|
|
|
class CacheManager: |
|
|
"""Cache management for generated videos and frames""" |
|
|
|
|
|
def __init__(self): |
|
|
self.cache_dir = Config.CACHE_DIR |
|
|
self.max_cache_size = Config.MAX_CACHE_SIZE |
|
|
self.cache = {} |
|
|
self.setup_cache() |
|
|
|
|
|
def setup_cache(self): |
|
|
"""Setup cache directory""" |
|
|
if not os.path.exists(self.cache_dir): |
|
|
os.makedirs(self.cache_dir) |
|
|
|
|
|
self.cleanup_old_cache() |
|
|
|
|
|
def generate_cache_key(self, params: VideoGenerationParams) -> str: |
|
|
"""Generate unique cache key from parameters""" |
|
|
param_str = f"{params.prompt}_{params.duration}_{params.frame_rate}_{params.width}_{params.height}_{params.seed}" |
|
|
return hashlib.md5(param_str.encode()).hexdigest() |
|
|
|
|
|
def save_to_cache(self, key: str, video_path: str): |
|
|
"""Save video to cache""" |
|
|
if len(self.cache) >= self.max_cache_size: |
|
|
self.cleanup_oldest() |
|
|
cache_path = os.path.join(self.cache_dir, key) |
|
|
shutil.copy(video_path, cache_path) |
|
|
self.cache[key] = {"path": cache_path, "timestamp": datetime.now()} |
|
|
|
|
|
def get_from_cache(self, key: str) -> Optional[str]: |
|
|
"""Get video from cache""" |
|
|
if key in self.cache: |
|
|
return self.cache[key]["path"] |
|
|
return None |
|
|
|
|
|
def cleanup_oldest(self): |
|
|
"""Remove oldest cache entry""" |
|
|
if self.cache: |
|
|
oldest_key = min(self.cache.keys(), key=lambda k: self.cache[k]["timestamp"]) |
|
|
cache_path = self.cache[oldest_key]["path"] |
|
|
if os.path.exists(cache_path): |
|
|
os.remove(cache_path) |
|
|
del self.cache[oldest_key] |
|
|
|
|
|
def cleanup_old_cache(self): |
|
|
"""Cleanup old cache files""" |
|
|
for filename in os.listdir(self.cache_dir): |
|
|
file_path = os.path.join(self.cache_dir, filename) |
|
|
if os.path.isfile(file_path) and datetime.fromtimestamp(os.path.getmtime(file_path)) < datetime.now() - timedelta(days=7): |
|
|
os.remove(file_path) |
|
|
|
|
|
|
|
|
class ModelManager: |
|
|
"""Manages loading and using the Wan2.2 model""" |
|
|
|
|
|
def __init__(self): |
|
|
self.device = Config.DEVICE |
|
|
self.model = None |
|
|
self.tokenizer = None |
|
|
self.pipeline = None |
|
|
self.logger = Logger() |
|
|
|
|
|
def load_model(self): |
|
|
"""Load the Wan2.2 model""" |
|
|
try: |
|
|
self.logger.info(f"Loading model on {self.device}...") |
|
|
|
|
|
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(Config.MODEL_NAME) |
|
|
|
|
|
|
|
|
self.model = AutoModelForCausalLM.from_pretrained( |
|
|
Config.MODEL_NAME, |
|
|
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32, |
|
|
device_map="auto" |
|
|
) |
|
|
|
|
|
|
|
|
self.pipeline = StableDiffusionPipeline.from_pretrained( |
|
|
Config.MODEL_NAME, |
|
|
scheduler=DPMSolverMultistepScheduler.from_config( |
|
|
DPMSolverMultistepScheduler.from_pretrained( |
|
|
Config.MODEL_NAME, subfolder="scheduler" |
|
|
) |
|
|
), |
|
|
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32 |
|
|
).to(self.device) |
|
|
|
|
|
self.logger.info("Model loaded successfully!") |
|
|
return True |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"Error loading model: {str(e)}") |
|
|
return False |
|
|
|
|
|
def generate_frame(self, prompt: str, negative_prompt: str = None, |
|
|
width: int = 512, height: int = 512, |
|
|
num_inference_steps: int = 50, guidance_scale: float = 7.5) -> np.ndarray: |
|
|
"""Generate a single frame from text prompt""" |
|
|
try: |
|
|
|
|
|
inputs = self.tokenizer(prompt, return_tensors="pt", padding=True, truncation=True) |
|
|
|
|
|
|
|
|
with torch.no_grad(): |
|
|
image = self.pipeline( |
|
|
prompt=prompt, |
|
|
negative_prompt=negative_prompt or Config.NEGATIVE_PROMPT, |
|
|
height=height, |
|
|
width=width, |
|
|
num_inference_steps=num_inference_steps, |
|
|
guidance_scale=guidance_scale, |
|
|
generator=torch.Generator(device=self.device).manual_seed(int(datetime.now().timestamp())) |
|
|
).images[0] |
|
|
|
|
|
|
|
|
frame = np.array(image) |
|
|
return frame |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"Error generating frame: {str(e)}") |
|
|
return None |
|
|
|
|
|
def generate_video_frames(self, params: VideoGenerationParams) -> List[VideoFrame]: |
|
|
"""Generate multiple frames for video""" |
|
|
frames = [] |
|
|
total_frames = int(params.duration * params.frame_rate) |
|
|
|
|
|
self.logger.info(f"Generating {total_frames} frames...") |
|
|
|
|
|
for i in range(total_frames): |
|
|
progress = (i / total_frames) * 100 |
|
|
if i % max(1, total_frames // 10) == 0: |
|
|
self.logger.info(f"Progress: {progress:.1f}%") |
|
|
|
|
|
|
|
|
timestamp = i / params.frame_rate |
|
|
prompt = f"{params.prompt} at time {timestamp:.2f}s" |
|
|
|
|
|
frame = self.generate_frame( |
|
|
prompt=prompt, |
|
|
negative_prompt=params.negative_prompt, |
|
|
width=params.width, |
|
|
height=params.height, |
|
|
num_inference_steps=params.num_inference_steps, |
|
|
guidance_scale=params.guidance_scale |
|
|
) |
|
|
|
|
|
if frame is not None: |
|
|
frames.append(VideoFrame( |
|
|
image=frame, |
|
|
timestamp=timestamp, |
|
|
metadata={"frame_index": i, "prompt": prompt} |
|
|
)) |
|
|
|
|
|
|
|
|
if self.device == "cuda": |
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
return frames |
|
|
|
|
|
def cleanup(self): |
|
|
"""Cleanup model resources""" |
|
|
if self.model: |
|
|
del self.model |
|
|
if self.pipeline: |
|
|
del self.pipeline |
|
|
if self.device == "cuda": |
|
|
torch.cuda.empty_cache() |
|
|
gc.collect() |
|
|
|
|
|
|
|
|
class VideoProcessor: |
|
|
"""Handles video creation and processing""" |
|
|
|
|
|
def __init__(self): |
|
|
self.logger = Logger() |
|
|
|
|
|
def create_video_from_frames(self, frames: List[VideoFrame], output_path: str, |
|
|
frame_rate: int = 24) -> bool: |
|
|
"""Create video from list of frames""" |
|
|
try: |
|
|
|
|
|
image_arrays = [] |
|
|
for frame in frames: |
|
|
if isinstance(frame.image, Image.Image): |
|
|
image_arrays.append(np.array(frame.image)) |
|
|
else: |
|
|
image_arrays.append(frame.image) |
|
|
|
|
|
|
|
|
clip = ImageSequenceClip(image_arrays, fps=frame_rate) |
|
|
|
|
|
|
|
|
clip.write_videofile(output_path, codec='libx264', audio=False) |
|
|
|
|
|
self.logger.info(f"Video saved to {output_path}") |
|
|
return True |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"Error creating video: {str(e)}") |
|
|
return False |
|
|
|
|
|
def add_audio_to_video(self, video_path: str, audio_path: str = None) -> str: |
|
|
"""Add audio to video""" |
|
|
try: |
|
|
|
|
|
if not audio_path: |
|
|
audio_path = self.generate_simple_audio(video_path) |
|
|
|
|
|
if not audio_path: |
|
|
return video_path |
|
|
|
|
|
|
|
|
output_path = video_path.replace(".mp4", "_with_audio.mp4") |
|
|
cmd = [ |
|
|
'ffmpeg', '-y', '-i', video_path, '-i', audio_path, |
|
|
'-c:v', 'copy', '-c:a', 'aac', '-strict', 'experimental', |
|
|
output_path |
|
|
] |
|
|
|
|
|
subprocess.run(cmd, check=True) |
|
|
return output_path |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"Error adding audio: {str(e)}") |
|
|
return video_path |
|
|
|
|
|
def generate_simple_audio(self, video_path: str) -> str: |
|
|
"""Generate simple audio for video""" |
|
|
try: |
|
|
duration = self.get_video_duration(video_path) |
|
|
audio_path = video_path.replace(".mp4", ".wav") |
|
|
|
|
|
|
|
|
cmd = [ |
|
|
'ffmpeg', '-y', '-f', 'lavfi', '-i', |
|
|
f'sin(frequency=440:duration={duration})', '-ar', '44100', |
|
|
audio_path |
|
|
] |
|
|
|
|
|
subprocess.run(cmd, check=True) |
|
|
return audio_path |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"Error generating audio: {str(e)}") |
|
|
return None |
|
|
|
|
|
def get_video_duration(self, video_path: str) -> float: |
|
|
"""Get video duration""" |
|
|
try: |
|
|
clip = VideoFileClip(video_path) |
|
|
duration = clip.duration |
|
|
clip.close() |
|
|
return duration |
|
|
except: |
|
|
return 5.0 |
|
|
|
|
|
|
|
|
class QueueManager: |
|
|
"""Manages task queue for video generation""" |
|
|
|
|
|
def __init__(self): |
|
|
self.queue = queue.Queue() |
|
|
self.processed_tasks = 0 |
|
|
self.max_workers = multiprocessing.cpu_count() |
|
|
self.lock = threading.Lock() |
|
|
|
|
|
def add_task(self, task_id: str, params: VideoGenerationParams): |
|
|
"""Add task to queue""" |
|
|
self.queue.put((task_id, params)) |
|
|
|
|
|
def process_queue(self, model_manager: ModelManager, video_processor: VideoProcessor): |
|
|
"""Process tasks in queue""" |
|
|
while True: |
|
|
try: |
|
|
task_id, params = self.queue.get(timeout=1) |
|
|
self.process_task(task_id, params, model_manager, video_processor) |
|
|
self.queue.task_done() |
|
|
except queue.Empty: |
|
|
continue |
|
|
|
|
|
def process_task(self, task_id: str, params: VideoGenerationParams, |
|
|
model_manager: ModelManager, video_processor: VideoProcessor): |
|
|
"""Process a single task""" |
|
|
try: |
|
|
|
|
|
frames = model_manager.generate_video_frames(params) |
|
|
|
|
|
if not frames: |
|
|
raise Exception("No frames generated") |
|
|
|
|
|
|
|
|
temp_dir = tempfile.mkdtemp() |
|
|
temp_video_path = os.path.join(temp_dir, "temp_video.mp4") |
|
|
|
|
|
if video_processor.create_video_from_frames(frames, temp_video_path, params.frame_rate): |
|
|
|
|
|
final_video_path = video_processor.add_audio_to_video(temp_video_path) |
|
|
|
|
|
|
|
|
self.save_result(task_id, final_video_path) |
|
|
|
|
|
|
|
|
shutil.rmtree(temp_dir) |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"Error processing task {task_id}: {str(e)}") |
|
|
|
|
|
|
|
|
class UIManager: |
|
|
"""Manages the user interface""" |
|
|
|
|
|
def __init__(self): |
|
|
self.model_manager = ModelManager() |
|
|
self.video_processor = VideoProcessor() |
|
|
self.cache_manager = CacheManager() |
|
|
self.queue_manager = QueueManager() |
|
|
self.logger = Logger() |
|
|
|
|
|
|
|
|
self.queue_thread = threading.Thread( |
|
|
target=self.queue_manager.process_queue, |
|
|
args=(self.model_manager, self.video_processor), |
|
|
daemon=True |
|
|
) |
|
|
self.queue_thread.start() |
|
|
|
|
|
def setup_ui(self): |
|
|
"""Setup Gradio UI""" |
|
|
with gr.Blocks(theme=gr.themes.HuggingFace()) as demo: |
|
|
gr.Markdown("# Hugging Face Wan2.2 Text-to-Video Generator") |
|
|
gr.Markdown("Generate videos from text prompts using Wan2.2-S2V-14B model") |
|
|
|
|
|
with gr.Row(): |
|
|
with gr.Column(): |
|
|
prompt_input = gr.Textbox( |
|
|
label="Text Prompt", |
|
|
placeholder="Enter your video description...", |
|
|
lines=3 |
|
|
) |
|
|
|
|
|
negative_prompt_input = gr.Textbox( |
|
|
label="Negative Prompt", |
|
|
placeholder="Enter what you don't want in the video...", |
|
|
lines=2 |
|
|
) |
|
|
|
|
|
duration_slider = gr.Slider( |
|
|
1, Config.MAX_VIDEO_LENGTH, value=10, |
|
|
label="Video Duration (seconds)" |
|
|
) |
|
|
|
|
|
frame_rate_slider = gr.Slider( |
|
|
12, 60, value=Config.DEFAULT_FRAME_RATE, |
|
|
label="Frame Rate (fps)" |
|
|
) |
|
|
|
|
|
quality_dropdown = gr.Dropdown( |
|
|
[q.value for q in VideoQuality], |
|
|
value=VideoQuality.MEDIUM.value, |
|
|
label="Quality Preset" |
|
|
) |
|
|
|
|
|
seed_input = gr.Number( |
|
|
value=int(datetime.now().timestamp()), |
|
|
label="Random Seed" |
|
|
) |
|
|
|
|
|
generate_btn = gr.Button("Generate Video") |
|
|
|
|
|
with gr.Column(): |
|
|
output_video = gr.Video(label="Generated Video") |
|
|
progress_bar = gr.ProgressBar() |
|
|
status_text = gr.Textbox(label="Status") |
|
|
|
|
|
|
|
|
generate_btn.click( |
|
|
self.generate_video, |
|
|
inputs=[prompt_input, negative_prompt_input, duration_slider, |
|
|
frame_rate_slider, quality_dropdown, seed_input], |
|
|
outputs=[output_video, progress_bar, status_text] |
|
|
) |
|
|
|
|
|
return demo |
|
|
|
|
|
def generate_video(self, prompt: str, negative_prompt: str, |
|
|
duration: int, frame_rate: int, quality: str, |
|
|
seed: int): |
|
|
"""Generate video from user input""" |
|
|
if not prompt.strip(): |
|
|
return None, None, "Please enter a prompt" |
|
|
|
|
|
try: |
|
|
|
|
|
params = self.get_quality_params(quality) |
|
|
|
|
|
|
|
|
gen_params = VideoGenerationParams( |
|
|
prompt=prompt, |
|
|
negative_prompt=negative_prompt or Config.NEGATIVE_PROMPT, |
|
|
duration=duration, |
|
|
frame_rate=frame_rate, |
|
|
width=params["width"], |
|
|
height=params["height"], |
|
|
guidance_scale=params["guidance_scale"], |
|
|
num_inference_steps=params["num_inference_steps"], |
|
|
seed=seed |
|
|
) |
|
|
|
|
|
|
|
|
cache_key = self.cache_manager.generate_cache_key(gen_params) |
|
|
cached_video = self.cache_manager.get_from_cache(cache_key) |
|
|
|
|
|
if cached_video and os.path.exists(cached_video): |
|
|
self.logger.info(f"Video found in cache: {cache_key}") |
|
|
return cached_video, None, "Video loaded from cache" |
|
|
|
|
|
|
|
|
task_id = str(uuid.uuid4()) |
|
|
self.queue_manager.add_task(task_id, gen_params) |
|
|
|
|
|
|
|
|
status = f"Processing: {prompt[:50]}..." |
|
|
return None, None, status |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"Error generating video: {str(e)}") |
|
|
return None, None, f"Error: {str(e)}" |
|
|
|
|
|
def get_quality_params(self, quality: str) -> Dict[str, Any]: |
|
|
"""Get parameters based on quality preset""" |
|
|
presets = { |
|
|
VideoQuality.LOW.value: { |
|
|
"width": 256, |
|
|
"height": 256, |
|
|
"guidance_scale": 5.0, |
|
|
"num_inference_steps": 20 |
|
|
}, |
|
|
VideoQuality.MEDIUM.value: { |
|
|
"width": 512, |
|
|
"height": 512, |
|
|
"guidance_scale": 7.5, |
|
|
"num_inference_steps": 50 |
|
|
}, |
|
|
VideoQuality.HIGH.value: { |
|
|
"width": 768, |
|
|
"height": 768, |
|
|
"guidance_scale": 8.5, |
|
|
"num_inference_steps": 75 |
|
|
}, |
|
|
VideoQuality.ULTRA.value: { |
|
|
"width": 1024, |
|
|
"height": 1024, |
|
|
"guidance_scale": 9.0, |
|
|
"num_inference_steps": 100 |
|
|
} |
|
|
} |
|
|
return presets.get(quality, presets[VideoQuality.MEDIUM.value]) |
|
|
|
|
|
def run(self): |
|
|
"""Run the application""" |
|
|
if not self.model_manager.load_model(): |
|
|
self.logger.error("Failed to load model. Exiting...") |
|
|
return |
|
|
|
|
|
demo = self.setup_ui() |
|
|
demo.launch( |
|
|
server_name="0.0.0.0", |
|
|
server_port=7860, |
|
|
share=True, |
|
|
debug=True |
|
|
) |
|
|
|
|
|
|
|
|
def main(): |
|
|
"""Main application entry point""" |
|
|
try: |
|
|
|
|
|
signal.signal(signal.SIGINT, signal_handler) |
|
|
signal.signal(signal.SIGTERM, signal_handler) |
|
|
|
|
|
|
|
|
ui = UIManager() |
|
|
ui.run() |
|
|
|
|
|
except KeyboardInterrupt: |
|
|
print("\nShutting down...") |
|
|
except Exception as e: |
|
|
print(f"Error: {str(e)}") |
|
|
|
|
|
def signal_handler(signum, frame): |
|
|
"""Signal handler for graceful shutdown""" |
|
|
print(f"\nReceived signal {signum}. Shutting down...") |
|
|
sys.exit(0) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |