Spaces:
Build error
Build error
import gradio as gr | |
import torch | |
import numpy as np | |
import sys | |
from vinorm import TTSnorm | |
from utils_audio import convert_to_wav | |
sys.path.append("vits") | |
import commons | |
import utils | |
from models import SynthesizerTrn | |
from text.symbols import symbols | |
from text import text_to_sequence | |
from scipy.io.wavfile import write | |
import logging | |
numba_logger = logging.getLogger("numba") | |
numba_logger.setLevel(logging.WARNING) | |
from resemblyzer import preprocess_wav, VoiceEncoder | |
device = "cpu" | |
def get_text(texts, hps): | |
text_norm_list = [] | |
for text in texts.split(","): | |
chunk_strings = [] | |
chunk_len = 30 | |
for i in range(0, len(text.split()), chunk_len): | |
chunk = " ".join(text.split()[i : i + chunk_len]) | |
chunk_strings.append(chunk) | |
for chunk_string in chunk_strings: | |
text_norm = text_to_sequence(chunk_string, hps.data.text_cleaners) | |
if hps.data.add_blank: | |
text_norm = commons.intersperse(text_norm, 0) | |
text_norm_list.append(torch.LongTensor(text_norm)) | |
return text_norm_list | |
def get_speaker_embedding(path): | |
encoder = VoiceEncoder(device="cpu") | |
path = convert_to_wav(path) | |
wav = preprocess_wav(path) | |
embed = encoder.embed_utterance(wav) | |
return embed | |
class VoiceClone: | |
def __init__(self, checkpoint_path): | |
hps = utils.get_hparams_from_file("vivos.json") | |
self.net_g = SynthesizerTrn( | |
len(symbols), | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
**hps.model | |
).to(device) | |
_ = self.net_g.eval() | |
_ = utils.load_checkpoint(checkpoint_path, self.net_g, None) | |
self.hps = hps | |
def infer(self, text, ref_audio): | |
text_norm = TTSnorm(text) | |
stn_tst_list = get_text(text_norm, self.hps) | |
with torch.no_grad(): | |
audios = [] | |
for stn_tst in stn_tst_list: | |
x_tst = stn_tst.to(device).unsqueeze(0) | |
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(device) | |
speaker_embedding = get_speaker_embedding(ref_audio) | |
speaker_embedding = ( | |
torch.FloatTensor(torch.from_numpy(speaker_embedding)) | |
.unsqueeze(0) | |
.to(device) | |
) | |
audio = self.net_g.infer( | |
x_tst, | |
x_tst_lengths, | |
speaker_embedding=speaker_embedding, | |
noise_scale=0.667, | |
noise_scale_w=0.8, | |
length_scale=1, | |
) | |
audio = audio[0][0, 0].data.cpu().float().numpy() | |
audios.append(audio) | |
print(audio.shape) | |
audios = np.concatenate(audios, axis=0) | |
write(ref_audio.replace(".wav", "_clone.wav"), 22050, audios) | |
return ref_audio.replace(".wav", "_clone.wav"), text_norm | |
object = VoiceClone("G_150000.pth") | |
def clonevoice(text: str, speaker_wav, file_upload, language: str): | |
speaker_source = "" | |
if speaker_wav is not None: | |
speaker_source = speaker_wav | |
elif file_upload is not None: | |
speaker_source = file_upload | |
else: | |
speaker_source = "vsontung.wav" | |
print(speaker_source) | |
outfile, text_norm = object.infer(text, speaker_source) | |
return [outfile, text_norm] | |
inputs = [ | |
gr.Textbox( | |
label="Input", | |
value="muốn ngồi ở một vị trí không ai ngồi được thì phải chịu cảm giác không ai chịu được", | |
max_lines=3, | |
), | |
gr.Audio(label="Speaker Wav", source="microphone", type="filepath"), | |
gr.Audio(label="Speaker Wav", source="upload", type="filepath"), | |
gr.Radio(label="Language", choices=["Vietnamese"], value="en"), | |
] | |
outputs = [gr.Audio(label="Output"), gr.TextArea()] | |
demo = gr.Interface(fn=clonevoice, inputs=inputs, outputs=outputs) | |
demo.launch(debug=True) | |