fhieni's picture
Update app.py
cd69483
raw
history blame
4.05 kB
import gradio as gr
import torch
import numpy as np
import sys
from vinorm import TTSnorm
from utils_audio import convert_to_wav
sys.path.append("vits")
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import text_to_sequence
from scipy.io.wavfile import write
import logging
numba_logger = logging.getLogger("numba")
numba_logger.setLevel(logging.WARNING)
from resemblyzer import preprocess_wav, VoiceEncoder
device = "cpu"
def get_text(texts, hps):
text_norm_list = []
for text in texts.split(","):
chunk_strings = []
chunk_len = 30
for i in range(0, len(text.split()), chunk_len):
chunk = " ".join(text.split()[i : i + chunk_len])
chunk_strings.append(chunk)
for chunk_string in chunk_strings:
text_norm = text_to_sequence(chunk_string, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm_list.append(torch.LongTensor(text_norm))
return text_norm_list
def get_speaker_embedding(path):
encoder = VoiceEncoder(device="cpu")
path = convert_to_wav(path)
wav = preprocess_wav(path)
embed = encoder.embed_utterance(wav)
return embed
class VoiceClone:
def __init__(self, checkpoint_path):
hps = utils.get_hparams_from_file("vivos.json")
self.net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model
).to(device)
_ = self.net_g.eval()
_ = utils.load_checkpoint(checkpoint_path, self.net_g, None)
self.hps = hps
def infer(self, text, ref_audio):
text_norm = TTSnorm(text)
stn_tst_list = get_text(text_norm, self.hps)
with torch.no_grad():
audios = []
for stn_tst in stn_tst_list:
x_tst = stn_tst.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(device)
speaker_embedding = get_speaker_embedding(ref_audio)
speaker_embedding = (
torch.FloatTensor(torch.from_numpy(speaker_embedding))
.unsqueeze(0)
.to(device)
)
audio = self.net_g.infer(
x_tst,
x_tst_lengths,
speaker_embedding=speaker_embedding,
noise_scale=0.667,
noise_scale_w=0.8,
length_scale=1,
)
audio = audio[0][0, 0].data.cpu().float().numpy()
audios.append(audio)
print(audio.shape)
audios = np.concatenate(audios, axis=0)
write(ref_audio.replace(".wav", "_clone.wav"), 22050, audios)
return ref_audio.replace(".wav", "_clone.wav"), text_norm
object = VoiceClone("G_150000.pth")
def clonevoice(text: str, speaker_wav, file_upload, language: str):
speaker_source = ""
if speaker_wav is not None:
speaker_source = speaker_wav
elif file_upload is not None:
speaker_source = file_upload
else:
speaker_source = "vsontung.wav"
print(speaker_source)
outfile, text_norm = object.infer(text, speaker_source)
return [outfile, text_norm]
inputs = [
gr.Textbox(
label="Input",
value="muốn ngồi ở một vị trí không ai ngồi được thì phải chịu cảm giác không ai chịu được",
max_lines=3,
),
gr.Audio(label="Speaker Wav", source="microphone", type="filepath"),
gr.Audio(label="Speaker Wav", source="upload", type="filepath"),
gr.Radio(label="Language", choices=["Vietnamese"], value="en"),
]
outputs = [gr.Audio(label="Output"), gr.TextArea()]
demo = gr.Interface(fn=clonevoice, inputs=inputs, outputs=outputs)
demo.launch(debug=True)