Spaces:
Sleeping
Sleeping
# Copyright 2020 Erik Härkönen. All rights reserved. | |
# This file is licensed to you under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. You may obtain a copy | |
# of the License at http://www.apache.org/licenses/LICENSE-2.0 | |
# Unless required by applicable law or agreed to in writing, software distributed under | |
# the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS | |
# OF ANY KIND, either express or implied. See the License for the specific language | |
# governing permissions and limitations under the License. | |
# Patch for broken CTRL+C handler | |
# https://github.com/ContinuumIO/anaconda-issues/issues/905 | |
import os | |
os.environ['FOR_DISABLE_CONSOLE_CTRL_HANDLER'] = '1' | |
import numpy as np | |
import os | |
from pathlib import Path | |
import re | |
import sys | |
import datetime | |
import argparse | |
import torch | |
import json | |
from types import SimpleNamespace | |
import scipy | |
from scipy.cluster.vq import kmeans | |
from tqdm import trange | |
from netdissect.nethook import InstrumentedModel | |
from config import Config | |
from estimators import get_estimator | |
from models import get_instrumented_model | |
SEED_SAMPLING = 1 | |
SEED_RANDOM_DIRS = 2 | |
SEED_LINREG = 3 | |
SEED_VISUALIZATION = 5 | |
B = 20 | |
n_clusters = 500 | |
def get_random_dirs(components, dimensions): | |
gen = np.random.RandomState(seed=SEED_RANDOM_DIRS) | |
dirs = gen.normal(size=(components, dimensions)) | |
dirs /= np.sqrt(np.sum(dirs**2, axis=1, keepdims=True)) | |
return dirs.astype(np.float32) | |
# Compute maximum batch size for given VRAM and network | |
def get_max_batch_size(inst, device, layer_name=None): | |
inst.remove_edits() | |
# Reset statistics | |
torch.cuda.reset_max_memory_cached(device) | |
torch.cuda.reset_max_memory_allocated(device) | |
total_mem = torch.cuda.get_device_properties(device).total_memory | |
B_max = 20 | |
# Measure actual usage | |
for i in range(2, B_max, 2): | |
z = inst.model.sample_latent(n_samples=i) | |
if layer_name: | |
inst.model.partial_forward(z, layer_name) | |
else: | |
inst.model.forward(z) | |
maxmem = torch.cuda.max_memory_allocated(device) | |
del z | |
if maxmem > 0.5*total_mem: | |
print('Batch size {:d}: memory usage {:.0f}MB'.format(i, maxmem / 1e6)) | |
return i | |
return B_max | |
# Solve for directions in latent space that match PCs in activaiton space | |
def linreg_lstsq(comp_np, mean_np, stdev_np, inst, config): | |
print('Performing least squares regression', flush=True) | |
torch.manual_seed(SEED_LINREG) | |
np.random.seed(SEED_LINREG) | |
comp = torch.from_numpy(comp_np).float().to(inst.model.device) | |
mean = torch.from_numpy(mean_np).float().to(inst.model.device) | |
stdev = torch.from_numpy(stdev_np).float().to(inst.model.device) | |
n_samp = max(10_000, config.n) // B * B # make divisible | |
n_comp = comp.shape[0] | |
latent_dims = inst.model.get_latent_dims() | |
# We're looking for M s.t. M*P*G'(Z) = Z => M*A = Z | |
# Z = batch of latent vectors (n_samples x latent_dims) | |
# G'(Z) = batch of activations at intermediate layer | |
# A = P*G'(Z) = projected activations (n_samples x pca_coords) | |
# M = linear mapping (pca_coords x latent_dims) | |
# Minimization min_M ||MA - Z||_l2 rewritten as min_M.T ||A.T*M.T - Z.T||_l2 | |
# to match format expected by pytorch.lstsq | |
# TODO: regression on pixel-space outputs? (using nonlinear optimizer) | |
# min_M lpips(G_full(MA), G_full(Z)) | |
# Tensors to fill with data | |
# Dimensions other way around, so these are actually the transposes | |
A = np.zeros((n_samp, n_comp), dtype=np.float32) | |
Z = np.zeros((n_samp, latent_dims), dtype=np.float32) | |
# Project tensor X onto PCs, return coordinates | |
def project(X, comp): | |
N = X.shape[0] | |
K = comp.shape[0] | |
coords = torch.bmm(comp.expand([N]+[-1]*comp.ndim), X.view(N, -1, 1)) | |
return coords.reshape(N, K) | |
for i in trange(n_samp // B, desc='Collecting samples', ascii=True): | |
z = inst.model.sample_latent(B) | |
inst.model.partial_forward(z, config.layer) | |
act = inst.retained_features()[config.layer].reshape(B, -1) | |
# Project onto basis | |
act = act - mean | |
coords = project(act, comp) | |
coords_scaled = coords / stdev | |
A[i*B:(i+1)*B] = coords_scaled.detach().cpu().numpy() | |
Z[i*B:(i+1)*B] = z.detach().cpu().numpy().reshape(B, -1) | |
# Solve least squares fit | |
# gelsd = divide-and-conquer SVD; good default | |
# gelsy = complete orthogonal factorization; sometimes faster | |
# gelss = SVD; slow but less memory hungry | |
M_t = scipy.linalg.lstsq(A, Z, lapack_driver='gelsd')[0] # torch.lstsq(Z, A)[0][:n_comp, :] | |
# Solution given by rows of M_t | |
Z_comp = M_t[:n_comp, :] | |
Z_mean = np.mean(Z, axis=0, keepdims=True) | |
return Z_comp, Z_mean | |
def regression(comp, mean, stdev, inst, config): | |
# Sanity check: verify orthonormality | |
M = np.dot(comp, comp.T) | |
if not np.allclose(M, np.identity(M.shape[0])): | |
det = np.linalg.det(M) | |
print(f'WARNING: Computed basis is not orthonormal (determinant={det})') | |
return linreg_lstsq(comp, mean, stdev, inst, config) | |
def compute(config, dump_name, instrumented_model): | |
global B | |
timestamp = lambda : datetime.datetime.now().strftime("%d.%m %H:%M") | |
print(f'[{timestamp()}] Computing', dump_name.name) | |
# Ensure reproducibility | |
torch.manual_seed(0) # also sets cuda seeds | |
np.random.seed(0) | |
# Speed up backend | |
torch.backends.cudnn.benchmark = True | |
has_gpu = torch.cuda.is_available() | |
device = torch.device('cuda' if has_gpu else 'cpu') | |
layer_key = config.layer | |
if instrumented_model is None: | |
inst = get_instrumented_model(config.model, config.output_class, layer_key, device) | |
model = inst.model | |
else: | |
print('Reusing InstrumentedModel instance') | |
inst = instrumented_model | |
model = inst.model | |
inst.remove_edits() | |
model.set_output_class(config.output_class) | |
# Regress back to w space | |
if config.use_w: | |
print('Using W latent space') | |
model.use_w() | |
inst.retain_layer(layer_key) | |
model.partial_forward(model.sample_latent(1), layer_key) | |
sample_shape = inst.retained_features()[layer_key].shape | |
sample_dims = np.prod(sample_shape) | |
print('Feature shape:', sample_shape) | |
input_shape = inst.model.get_latent_shape() | |
input_dims = inst.model.get_latent_dims() | |
config.components = min(config.components, sample_dims) | |
transformer = get_estimator(config.estimator, config.components, config.sparsity) | |
X = None | |
X_global_mean = None | |
# Figure out batch size if not provided | |
B = config.batch_size or get_max_batch_size(inst, device, layer_key) | |
# Divisible by B (ignored in output name) | |
N = config.n // B * B | |
# Compute maximum batch size based on RAM + pagefile budget | |
target_bytes = 20 * 1_000_000_000 # GB | |
feat_size_bytes = sample_dims * np.dtype('float64').itemsize | |
N_limit_RAM = np.floor_divide(target_bytes, feat_size_bytes) | |
if not transformer.batch_support and N > N_limit_RAM: | |
print('WARNING: estimator does not support batching, ' \ | |
'given config will use {:.1f} GB memory.'.format(feat_size_bytes / 1_000_000_000 * N)) | |
# 32-bit LAPACK gets very unhappy about huge matrices (in linalg.svd) | |
if config.estimator == 'ica': | |
lapack_max_N = np.floor_divide(np.iinfo(np.int32).max // 4, sample_dims) # 4x extra buffer | |
if N > lapack_max_N: | |
raise RuntimeError(f'Matrices too large for ICA, please use N <= {lapack_max_N}') | |
print('B={}, N={}, dims={}, N/dims={:.1f}'.format(B, N, sample_dims, N/sample_dims), flush=True) | |
# Must not depend on chosen batch size (reproducibility) | |
NB = max(B, max(2_000, 3*config.components)) # ipca: as large as possible! | |
samples = None | |
if not transformer.batch_support: | |
samples = np.zeros((N + NB, sample_dims), dtype=np.float32) | |
torch.manual_seed(config.seed or SEED_SAMPLING) | |
np.random.seed(config.seed or SEED_SAMPLING) | |
# Use exactly the same latents regardless of batch size | |
# Store in main memory, since N might be huge (1M+) | |
# Run in batches, since sample_latent() might perform Z -> W mapping | |
n_lat = ((N + NB - 1) // B + 1) * B | |
latents = np.zeros((n_lat, *input_shape[1:]), dtype=np.float32) | |
with torch.no_grad(): | |
for i in trange(n_lat // B, desc='Sampling latents'): | |
latents[i*B:(i+1)*B] = model.sample_latent(n_samples=B).cpu().numpy() | |
# Decomposition on non-Gaussian latent space | |
samples_are_latents = layer_key in ['g_mapping', 'style'] and inst.model.latent_space_name() == 'W' | |
canceled = False | |
try: | |
X = np.ones((NB, sample_dims), dtype=np.float32) | |
action = 'Fitting' if transformer.batch_support else 'Collecting' | |
for gi in trange(0, N, NB, desc=f'{action} batches (NB={NB})', ascii=True): | |
for mb in range(0, NB, B): | |
z = torch.from_numpy(latents[gi+mb:gi+mb+B]).to(device) | |
if samples_are_latents: | |
# Decomposition on latents directly (e.g. StyleGAN W) | |
batch = z.reshape((B, -1)) | |
else: | |
# Decomposition on intermediate layer | |
with torch.no_grad(): | |
model.partial_forward(z, layer_key) | |
# Permuted to place PCA dimensions last | |
batch = inst.retained_features()[layer_key].reshape((B, -1)) | |
space_left = min(B, NB - mb) | |
X[mb:mb+space_left] = batch.cpu().numpy()[:space_left] | |
if transformer.batch_support: | |
if not transformer.fit_partial(X.reshape(-1, sample_dims)): | |
break | |
else: | |
samples[gi:gi+NB, :] = X.copy() | |
except KeyboardInterrupt: | |
if not transformer.batch_support: | |
sys.exit(1) # no progress yet | |
dump_name = dump_name.parent / dump_name.name.replace(f'n{N}', f'n{gi}') | |
print(f'Saving current state to "{dump_name.name}" before exiting') | |
canceled = True | |
if not transformer.batch_support: | |
X = samples # Use all samples | |
X_global_mean = X.mean(axis=0, keepdims=True, dtype=np.float32) # TODO: activations surely multi-modal...! | |
X -= X_global_mean | |
print(f'[{timestamp()}] Fitting whole batch') | |
t_start_fit = datetime.datetime.now() | |
transformer.fit(X) | |
print(f'[{timestamp()}] Done in {datetime.datetime.now() - t_start_fit}') | |
assert np.all(transformer.transformer.mean_ < 1e-3), 'Mean of normalized data should be zero' | |
else: | |
X_global_mean = transformer.transformer.mean_.reshape((1, sample_dims)) | |
X = X.reshape(-1, sample_dims) | |
X -= X_global_mean | |
X_comp, X_stdev, X_var_ratio = transformer.get_components() | |
assert X_comp.shape[1] == sample_dims \ | |
and X_comp.shape[0] == config.components \ | |
and X_global_mean.shape[1] == sample_dims \ | |
and X_stdev.shape[0] == config.components, 'Invalid shape' | |
# 'Activations' are really latents in a secondary latent space | |
if samples_are_latents: | |
Z_comp = X_comp | |
Z_global_mean = X_global_mean | |
else: | |
Z_comp, Z_global_mean = regression(X_comp, X_global_mean, X_stdev, inst, config) | |
# Normalize | |
Z_comp /= np.linalg.norm(Z_comp, axis=-1, keepdims=True) | |
# Random projections | |
# We expect these to explain much less of the variance | |
random_dirs = get_random_dirs(config.components, np.prod(sample_shape)) | |
n_rand_samples = min(5000, X.shape[0]) | |
X_view = X[:n_rand_samples, :].T | |
assert np.shares_memory(X_view, X), "Error: slice produced copy" | |
X_stdev_random = np.dot(random_dirs, X_view).std(axis=1) | |
# Inflate back to proper shapes (for easier broadcasting) | |
X_comp = X_comp.reshape(-1, *sample_shape) | |
X_global_mean = X_global_mean.reshape(sample_shape) | |
Z_comp = Z_comp.reshape(-1, *input_shape) | |
Z_global_mean = Z_global_mean.reshape(input_shape) | |
# Compute stdev in latent space if non-Gaussian | |
lat_stdev = np.ones_like(X_stdev) | |
if config.use_w: | |
samples = model.sample_latent(5000).reshape(5000, input_dims).detach().cpu().numpy() | |
coords = np.dot(Z_comp.reshape(-1, input_dims), samples.T) | |
lat_stdev = coords.std(axis=1) | |
os.makedirs(dump_name.parent, exist_ok=True) | |
np.savez_compressed(dump_name, **{ | |
'act_comp': X_comp.astype(np.float32), | |
'act_mean': X_global_mean.astype(np.float32), | |
'act_stdev': X_stdev.astype(np.float32), | |
'lat_comp': Z_comp.astype(np.float32), | |
'lat_mean': Z_global_mean.astype(np.float32), | |
'lat_stdev': lat_stdev.astype(np.float32), | |
'var_ratio': X_var_ratio.astype(np.float32), | |
'random_stdevs': X_stdev_random.astype(np.float32), | |
}) | |
if canceled: | |
sys.exit(1) | |
# Don't shutdown if passed as param | |
if instrumented_model is None: | |
inst.close() | |
del inst | |
del model | |
del X | |
del X_comp | |
del random_dirs | |
del batch | |
del samples | |
del latents | |
torch.cuda.empty_cache() | |
# Return cached results or commpute if needed | |
# Pass existing InstrumentedModel instance to reuse it | |
def get_or_compute(config, model=None, submit_config=None, force_recompute=False): | |
if submit_config is None: | |
wrkdir = str(Path(__file__).parent.resolve()) | |
submit_config = SimpleNamespace(run_dir_root = wrkdir, run_dir = wrkdir) | |
# Called directly by run.py | |
return _compute(submit_config, config, model, force_recompute) | |
def _compute(submit_config, config, model=None, force_recompute=False): | |
basedir = Path(submit_config.run_dir) | |
outdir = basedir / 'out' | |
if config.n is None: | |
raise RuntimeError('Must specify number of samples with -n=XXX') | |
if model and not isinstance(model, InstrumentedModel): | |
raise RuntimeError('Passed model has to be wrapped in "InstrumentedModel"') | |
if config.use_w and not 'StyleGAN' in config.model: | |
raise RuntimeError(f'Cannot change latent space of non-StyleGAN model {config.model}') | |
transformer = get_estimator(config.estimator, config.components, config.sparsity) | |
dump_name = "{}-{}_{}_{}_n{}{}{}.npz".format( | |
config.model.lower(), | |
config.output_class.replace(' ', '_'), | |
config.layer.lower(), | |
transformer.get_param_str(), | |
config.n, | |
'_w' if config.use_w else '', | |
f'_seed{config.seed}' if config.seed else '' | |
) | |
dump_path = basedir / 'cache' / 'components' / dump_name | |
if not dump_path.is_file() or force_recompute: | |
print('Not cached') | |
t_start = datetime.datetime.now() | |
compute(config, dump_path, model) | |
print('Total time:', datetime.datetime.now() - t_start) | |
return dump_path |