File size: 10,339 Bytes
f70260b
 
 
 
 
 
1cfe6b6
f70260b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02332b1
f70260b
 
 
 
1cfe6b6
f70260b
 
1cfe6b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f70260b
 
420f5d5
1cfe6b6
f70260b
1cfe6b6
 
1090857
1cfe6b6
 
 
 
 
 
 
 
 
 
 
 
f70260b
1cfe6b6
f70260b
 
1cfe6b6
 
 
 
 
 
 
f70260b
 
1cfe6b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0085c87
43feb2c
 
1cfe6b6
 
43feb2c
1cfe6b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
420f5d5
 
1cfe6b6
 
 
 
 
 
 
 
 
1090857
 
1cfe6b6
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import os
import spaces
import trimesh
import traceback
import numpy as np
import gradio as gr
from functools import partial
from multiprocessing import Process, Queue

import torch
from torch import nn
from transformers import (
    AutoTokenizer, Qwen2ForCausalLM, Qwen2Model, PreTrainedModel)
from transformers.modeling_outputs import CausalLMOutputWithPast


class FourierPointEncoder(nn.Module):
    def __init__(self, hidden_size):
        super().__init__()
        frequencies = 2.0 ** torch.arange(8, dtype=torch.float32)
        self.register_buffer('frequencies', frequencies, persistent=False)
        self.projection = nn.Linear(54, hidden_size)

    def forward(self, points):
        x = points[..., :3]
        x = (x.unsqueeze(-1) * self.frequencies).view(*x.shape[:-1], -1)
        x = torch.cat((points[..., :3], x.sin(), x.cos()), dim=-1)
        x = self.projection(torch.cat((x, points[..., 3:]), dim=-1))
        return x


class CADRecode(Qwen2ForCausalLM):
    def __init__(self, config):
        PreTrainedModel.__init__(self, config)
        self.model = Qwen2Model(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        
        torch.set_default_dtype(torch.float32)
        self.point_encoder = FourierPointEncoder(config.hidden_size)
        torch.set_default_dtype(torch.bfloat16)

    def forward(self,
                input_ids=None,
                attention_mask=None,
                point_cloud=None,
                position_ids=None,
                past_key_values=None,
                inputs_embeds=None,
                labels=None,
                use_cache=None,
                output_attentions=None,
                output_hidden_states=None,
                return_dict=None,
                cache_position=None):
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # concatenate point and text embeddings
        if past_key_values is None or past_key_values.get_seq_length() == 0:
            assert inputs_embeds is None
            inputs_embeds = self.model.embed_tokens(input_ids)
            point_embeds = self.point_encoder(point_cloud).bfloat16()
            inputs_embeds[attention_mask == -1] = point_embeds.reshape(-1, point_embeds.shape[2])
            attention_mask[attention_mask == -1] = 1
            input_ids = None
            position_ids = None

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position)

        hidden_states = outputs[0]
        logits = self.lm_head(hidden_states)
        logits = logits.float()

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = nn.CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions)

    def prepare_inputs_for_generation(self, *args, **kwargs):
        model_inputs = super().prepare_inputs_for_generation(*args, **kwargs)
        model_inputs['point_cloud'] = kwargs['point_cloud']
        return model_inputs


def mesh_to_point_cloud(mesh, n_points=256):
    vertices, faces = trimesh.sample.sample_surface(mesh, n_points)
    point_cloud = np.concatenate((
        np.asarray(vertices),
        mesh.face_normals[faces]
    ), axis=1)
    ids = np.lexsort((point_cloud[:, 0], point_cloud[:, 1], point_cloud[:, 2]))
    point_cloud = point_cloud[ids]
    return point_cloud


def py_string_to_mesh_file(py_string, mesh_path, queue):
    try:
        exec(py_string, globals())
        compound = globals()['r'].val()
        vertices, faces = compound.tessellate(0.001, 0.1)
        mesh = trimesh.Trimesh([(v.x, v.y, v.z) for v in vertices], faces)
        mesh.export(mesh_path)
    except:
        queue.put(traceback.format_exc())


def py_string_to_mesh_file_safe(py_string, mesh_path):
    # CadQuery code predicted by LLM may be unsafe and cause memory leaks.
    # That's why we execute it in a separace Process with timeout.
    queue = Queue()
    process = Process(
        target=py_string_to_mesh_file,
        args=(py_string, mesh_path, queue))
    process.start()
    process.join(5)

    if process.is_alive():
        process.terminate()
        process.join()
        raise gr.Error('Process is alive after 3 seconds')
    
    if not queue.empty():
        raise gr.Error(queue.get())


def run_point_cloud(in_mesh_path, seed):
    try:
        mesh = trimesh.load(in_mesh_path)
        mesh.apply_translation(-(mesh.bounds[0] + mesh.bounds[1]) / 2.0)
        mesh.apply_scale(2.0 / max(mesh.extents))
        np.random.seed(seed)
        point_cloud = mesh_to_point_cloud(mesh)
        pcd_path = '/tmp/pcd.obj'
        trimesh.points.PointCloud(point_cloud[:, :3]).export(pcd_path)
        return point_cloud, pcd_path
    except:
        raise gr.Error(traceback.format_exc())


@spaces.GPU(duration=20)
def run_cad_recode(point_cloud):
    try:
        input_ids = [tokenizer.pad_token_id] * len(point_cloud) + [tokenizer('<|im_start|>')['input_ids'][0]]
        attention_mask = [-1] * len(point_cloud) + [1]
        model = cad_recode.cuda()
        with torch.no_grad():
            batch_ids = cad_recode.generate(
                input_ids=torch.tensor(input_ids).unsqueeze(0).to(model.device),
                attention_mask=torch.tensor(attention_mask).unsqueeze(0).to(model.device),
                point_cloud=torch.tensor(point_cloud.astype(np.float32)).unsqueeze(0).to(model.device),
                max_new_tokens=768,
                pad_token_id=tokenizer.pad_token_id).cpu()
        py_string = tokenizer.batch_decode(batch_ids)[0]
        begin = py_string.find('<|im_start|>') + 12
        end = py_string.find('<|endoftext|>')
        py_string = py_string[begin: end]
        return py_string, py_string
    except:
        raise gr.Error(traceback.format_exc())


def run_mesh(py_string):
    try:
        out_mesh_path = '/tmp/mesh.stl'
        py_string_to_mesh_file_safe(py_string, out_mesh_path)
        return out_mesh_path
    except:
        raise gr.Error(traceback.format_exc())


def run():
    with gr.Blocks() as demo:
        with gr.Row():
            gr.Markdown('## CAD-Recode Demo\n'
                        'Upload mesh or select from examples and press Run! Mesh ⇾ 256 points ⇾ Python code by CAD-Recode ⇾ CAD model.')

        with gr.Row(equal_height=True):
            in_model = gr.Model3D(label='1. Input Mesh', interactive=True)
            point_model = gr.Model3D(label='2. Sampled Point Cloud', display_mode='point_cloud', interactive=False)
            out_model = gr.Model3D(
                label='4. Result CAD Model', interactive=False
            )
        
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    seed_slider = gr.Slider(label='Random Seed', value=42, interactive=True)
                with gr.Row():
                    gr.Examples(
                        examples=[
                            ['./data/49215_5368e45e_0000.stl', 42],
                            ['./data/00882236.stl', 6],
                            ['./data/User Library-engrenage.stl', 18],
                            ['./data/00010900.stl', 42],
                            ['./data/21492_8bd34fc1_0008.stl', 42],
                            ['./data/00375556.stl', 96],
                            ['./data/49121_adb01620_0000.stl', 42],
                            ['./data/41473_c2137170_0023.stl', 42]],
                        example_labels=[
                            'fusion360_table1', 'deepcad_star', 'cc3d_gear', 'deepcad_barrels',
                            'fusion360_gear', 'deepcad_house', 'fusion360_table2', 'fusion360_omega'],
                        inputs=[in_model, seed_slider],
                        cache_examples=False)
                with gr.Row():
                    run_button = gr.Button('Run')

            with gr.Column():
                out_code = gr.Code(language='python', label='3. Generated Python Code', wrap_lines=True, interactive=False)
            
            with gr.Column():
                pass

        state = gr.State()
        run_button.click(
            run_point_cloud,
            inputs=[in_model, seed_slider],
            outputs=[state, point_model]
        ).success(
            run_cad_recode,
            inputs=[state],
            outputs=[state, out_code]
        ).success(
            run_mesh,
            inputs=[state],
            outputs=[out_model]
        )

    demo.launch(show_error=True)


tokenizer = AutoTokenizer.from_pretrained(
    'Qwen/Qwen2-1.5B',
    pad_token='<|im_end|>',
    padding_side='left')
cad_recode = CADRecode.from_pretrained(
    'filapro/cad-recode',
    torch_dtype='auto',
    attn_implementation='flash_attention_2').eval()

os.environ['TOKENIZERS_PARALLELISM'] = 'False'
run()