Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,339 Bytes
f70260b 1cfe6b6 f70260b 02332b1 f70260b 1cfe6b6 f70260b 1cfe6b6 f70260b 420f5d5 1cfe6b6 f70260b 1cfe6b6 1090857 1cfe6b6 f70260b 1cfe6b6 f70260b 1cfe6b6 f70260b 1cfe6b6 0085c87 43feb2c 1cfe6b6 43feb2c 1cfe6b6 420f5d5 1cfe6b6 1090857 1cfe6b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
import os
import spaces
import trimesh
import traceback
import numpy as np
import gradio as gr
from functools import partial
from multiprocessing import Process, Queue
import torch
from torch import nn
from transformers import (
AutoTokenizer, Qwen2ForCausalLM, Qwen2Model, PreTrainedModel)
from transformers.modeling_outputs import CausalLMOutputWithPast
class FourierPointEncoder(nn.Module):
def __init__(self, hidden_size):
super().__init__()
frequencies = 2.0 ** torch.arange(8, dtype=torch.float32)
self.register_buffer('frequencies', frequencies, persistent=False)
self.projection = nn.Linear(54, hidden_size)
def forward(self, points):
x = points[..., :3]
x = (x.unsqueeze(-1) * self.frequencies).view(*x.shape[:-1], -1)
x = torch.cat((points[..., :3], x.sin(), x.cos()), dim=-1)
x = self.projection(torch.cat((x, points[..., 3:]), dim=-1))
return x
class CADRecode(Qwen2ForCausalLM):
def __init__(self, config):
PreTrainedModel.__init__(self, config)
self.model = Qwen2Model(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
torch.set_default_dtype(torch.float32)
self.point_encoder = FourierPointEncoder(config.hidden_size)
torch.set_default_dtype(torch.bfloat16)
def forward(self,
input_ids=None,
attention_mask=None,
point_cloud=None,
position_ids=None,
past_key_values=None,
inputs_embeds=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
cache_position=None):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# concatenate point and text embeddings
if past_key_values is None or past_key_values.get_seq_length() == 0:
assert inputs_embeds is None
inputs_embeds = self.model.embed_tokens(input_ids)
point_embeds = self.point_encoder(point_cloud).bfloat16()
inputs_embeds[attention_mask == -1] = point_embeds.reshape(-1, point_embeds.shape[2])
attention_mask[attention_mask == -1] = 1
input_ids = None
position_ids = None
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
logits = logits.float()
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = nn.CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions)
def prepare_inputs_for_generation(self, *args, **kwargs):
model_inputs = super().prepare_inputs_for_generation(*args, **kwargs)
model_inputs['point_cloud'] = kwargs['point_cloud']
return model_inputs
def mesh_to_point_cloud(mesh, n_points=256):
vertices, faces = trimesh.sample.sample_surface(mesh, n_points)
point_cloud = np.concatenate((
np.asarray(vertices),
mesh.face_normals[faces]
), axis=1)
ids = np.lexsort((point_cloud[:, 0], point_cloud[:, 1], point_cloud[:, 2]))
point_cloud = point_cloud[ids]
return point_cloud
def py_string_to_mesh_file(py_string, mesh_path, queue):
try:
exec(py_string, globals())
compound = globals()['r'].val()
vertices, faces = compound.tessellate(0.001, 0.1)
mesh = trimesh.Trimesh([(v.x, v.y, v.z) for v in vertices], faces)
mesh.export(mesh_path)
except:
queue.put(traceback.format_exc())
def py_string_to_mesh_file_safe(py_string, mesh_path):
# CadQuery code predicted by LLM may be unsafe and cause memory leaks.
# That's why we execute it in a separace Process with timeout.
queue = Queue()
process = Process(
target=py_string_to_mesh_file,
args=(py_string, mesh_path, queue))
process.start()
process.join(5)
if process.is_alive():
process.terminate()
process.join()
raise gr.Error('Process is alive after 3 seconds')
if not queue.empty():
raise gr.Error(queue.get())
def run_point_cloud(in_mesh_path, seed):
try:
mesh = trimesh.load(in_mesh_path)
mesh.apply_translation(-(mesh.bounds[0] + mesh.bounds[1]) / 2.0)
mesh.apply_scale(2.0 / max(mesh.extents))
np.random.seed(seed)
point_cloud = mesh_to_point_cloud(mesh)
pcd_path = '/tmp/pcd.obj'
trimesh.points.PointCloud(point_cloud[:, :3]).export(pcd_path)
return point_cloud, pcd_path
except:
raise gr.Error(traceback.format_exc())
@spaces.GPU(duration=20)
def run_cad_recode(point_cloud):
try:
input_ids = [tokenizer.pad_token_id] * len(point_cloud) + [tokenizer('<|im_start|>')['input_ids'][0]]
attention_mask = [-1] * len(point_cloud) + [1]
model = cad_recode.cuda()
with torch.no_grad():
batch_ids = cad_recode.generate(
input_ids=torch.tensor(input_ids).unsqueeze(0).to(model.device),
attention_mask=torch.tensor(attention_mask).unsqueeze(0).to(model.device),
point_cloud=torch.tensor(point_cloud.astype(np.float32)).unsqueeze(0).to(model.device),
max_new_tokens=768,
pad_token_id=tokenizer.pad_token_id).cpu()
py_string = tokenizer.batch_decode(batch_ids)[0]
begin = py_string.find('<|im_start|>') + 12
end = py_string.find('<|endoftext|>')
py_string = py_string[begin: end]
return py_string, py_string
except:
raise gr.Error(traceback.format_exc())
def run_mesh(py_string):
try:
out_mesh_path = '/tmp/mesh.stl'
py_string_to_mesh_file_safe(py_string, out_mesh_path)
return out_mesh_path
except:
raise gr.Error(traceback.format_exc())
def run():
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown('## CAD-Recode Demo\n'
'Upload mesh or select from examples and press Run! Mesh ⇾ 256 points ⇾ Python code by CAD-Recode ⇾ CAD model.')
with gr.Row(equal_height=True):
in_model = gr.Model3D(label='1. Input Mesh', interactive=True)
point_model = gr.Model3D(label='2. Sampled Point Cloud', display_mode='point_cloud', interactive=False)
out_model = gr.Model3D(
label='4. Result CAD Model', interactive=False
)
with gr.Row():
with gr.Column():
with gr.Row():
seed_slider = gr.Slider(label='Random Seed', value=42, interactive=True)
with gr.Row():
gr.Examples(
examples=[
['./data/49215_5368e45e_0000.stl', 42],
['./data/00882236.stl', 6],
['./data/User Library-engrenage.stl', 18],
['./data/00010900.stl', 42],
['./data/21492_8bd34fc1_0008.stl', 42],
['./data/00375556.stl', 96],
['./data/49121_adb01620_0000.stl', 42],
['./data/41473_c2137170_0023.stl', 42]],
example_labels=[
'fusion360_table1', 'deepcad_star', 'cc3d_gear', 'deepcad_barrels',
'fusion360_gear', 'deepcad_house', 'fusion360_table2', 'fusion360_omega'],
inputs=[in_model, seed_slider],
cache_examples=False)
with gr.Row():
run_button = gr.Button('Run')
with gr.Column():
out_code = gr.Code(language='python', label='3. Generated Python Code', wrap_lines=True, interactive=False)
with gr.Column():
pass
state = gr.State()
run_button.click(
run_point_cloud,
inputs=[in_model, seed_slider],
outputs=[state, point_model]
).success(
run_cad_recode,
inputs=[state],
outputs=[state, out_code]
).success(
run_mesh,
inputs=[state],
outputs=[out_model]
)
demo.launch(show_error=True)
tokenizer = AutoTokenizer.from_pretrained(
'Qwen/Qwen2-1.5B',
pad_token='<|im_end|>',
padding_side='left')
cad_recode = CADRecode.from_pretrained(
'filapro/cad-recode',
torch_dtype='auto',
attn_implementation='flash_attention_2').eval()
os.environ['TOKENIZERS_PARALLELISM'] = 'False'
run() |