Spaces:
Running
on
Zero
Running
on
Zero
Pierre Chapuis
commited on
Commit
•
ae1f8f9
1
Parent(s):
f3f480b
clean up ESRGAN code
Browse files- src/enhancer.py +0 -1
- src/esrgan_model.py +118 -881
src/enhancer.py
CHANGED
@@ -26,7 +26,6 @@ class ESRGANUpscaler(MultiUpscaler):
|
|
26 |
) -> None:
|
27 |
super().__init__(checkpoints=checkpoints, device=device, dtype=dtype)
|
28 |
self.esrgan = UpscalerESRGAN(checkpoints.esrgan, device=self.device, dtype=self.dtype)
|
29 |
-
self.esrgan.to(device=device, dtype=dtype)
|
30 |
|
31 |
def to(self, device: torch.device, dtype: torch.dtype):
|
32 |
self.esrgan.to(device=device, dtype=dtype)
|
|
|
26 |
) -> None:
|
27 |
super().__init__(checkpoints=checkpoints, device=device, dtype=dtype)
|
28 |
self.esrgan = UpscalerESRGAN(checkpoints.esrgan, device=self.device, dtype=self.dtype)
|
|
|
29 |
|
30 |
def to(self, device: torch.device, dtype: torch.dtype):
|
31 |
self.esrgan.to(device=device, dtype=dtype)
|
src/esrgan_model.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
# type: ignore
|
2 |
"""
|
3 |
Modified from https://github.com/philz1337x/clarity-upscaler
|
4 |
which is a copy of https://github.com/AUTOMATIC1111/stable-diffusion-webui
|
@@ -7,215 +6,21 @@ which is a copy of https://github.com/xinntao/ESRGAN
|
|
7 |
"""
|
8 |
|
9 |
import math
|
10 |
-
import os
|
11 |
-
from collections import OrderedDict, namedtuple
|
12 |
from pathlib import Path
|
|
|
13 |
|
14 |
import numpy as np
|
|
|
15 |
import torch
|
16 |
import torch.nn as nn
|
17 |
-
import torch.nn.functional as F
|
18 |
from PIL import Image
|
19 |
|
20 |
-
####################
|
21 |
-
# RRDBNet Generator
|
22 |
-
####################
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
out_nc,
|
30 |
-
nf,
|
31 |
-
nb,
|
32 |
-
nr=3,
|
33 |
-
gc=32,
|
34 |
-
upscale=4,
|
35 |
-
norm_type=None,
|
36 |
-
act_type="leakyrelu",
|
37 |
-
mode="CNA",
|
38 |
-
upsample_mode="upconv",
|
39 |
-
convtype="Conv2D",
|
40 |
-
finalact=None,
|
41 |
-
gaussian_noise=False,
|
42 |
-
plus=False,
|
43 |
-
):
|
44 |
-
super(RRDBNet, self).__init__()
|
45 |
-
n_upscale = int(math.log(upscale, 2))
|
46 |
-
if upscale == 3:
|
47 |
-
n_upscale = 1
|
48 |
-
|
49 |
-
self.resrgan_scale = 0
|
50 |
-
if in_nc % 16 == 0:
|
51 |
-
self.resrgan_scale = 1
|
52 |
-
elif in_nc != 4 and in_nc % 4 == 0:
|
53 |
-
self.resrgan_scale = 2
|
54 |
-
|
55 |
-
fea_conv = conv_block(in_nc, nf, kernel_size=3, norm_type=None, act_type=None, convtype=convtype)
|
56 |
-
rb_blocks = [
|
57 |
-
RRDB(
|
58 |
-
nf,
|
59 |
-
nr,
|
60 |
-
kernel_size=3,
|
61 |
-
gc=32,
|
62 |
-
stride=1,
|
63 |
-
bias=1,
|
64 |
-
pad_type="zero",
|
65 |
-
norm_type=norm_type,
|
66 |
-
act_type=act_type,
|
67 |
-
mode="CNA",
|
68 |
-
convtype=convtype,
|
69 |
-
gaussian_noise=gaussian_noise,
|
70 |
-
plus=plus,
|
71 |
-
)
|
72 |
-
for _ in range(nb)
|
73 |
-
]
|
74 |
-
LR_conv = conv_block(
|
75 |
-
nf,
|
76 |
-
nf,
|
77 |
-
kernel_size=3,
|
78 |
-
norm_type=norm_type,
|
79 |
-
act_type=None,
|
80 |
-
mode=mode,
|
81 |
-
convtype=convtype,
|
82 |
-
)
|
83 |
-
|
84 |
-
if upsample_mode == "upconv":
|
85 |
-
upsample_block = upconv_block
|
86 |
-
elif upsample_mode == "pixelshuffle":
|
87 |
-
upsample_block = pixelshuffle_block
|
88 |
-
else:
|
89 |
-
raise NotImplementedError(f"upsample mode [{upsample_mode}] is not found")
|
90 |
-
if upscale == 3:
|
91 |
-
upsampler = upsample_block(nf, nf, 3, act_type=act_type, convtype=convtype)
|
92 |
-
else:
|
93 |
-
upsampler = [upsample_block(nf, nf, act_type=act_type, convtype=convtype) for _ in range(n_upscale)]
|
94 |
-
HR_conv0 = conv_block(nf, nf, kernel_size=3, norm_type=None, act_type=act_type, convtype=convtype)
|
95 |
-
HR_conv1 = conv_block(nf, out_nc, kernel_size=3, norm_type=None, act_type=None, convtype=convtype)
|
96 |
-
|
97 |
-
outact = act(finalact) if finalact else None
|
98 |
-
|
99 |
-
self.model = sequential(
|
100 |
-
fea_conv,
|
101 |
-
ShortcutBlock(sequential(*rb_blocks, LR_conv)),
|
102 |
-
*upsampler,
|
103 |
-
HR_conv0,
|
104 |
-
HR_conv1,
|
105 |
-
outact,
|
106 |
-
)
|
107 |
-
|
108 |
-
def forward(self, x, outm=None):
|
109 |
-
if self.resrgan_scale == 1:
|
110 |
-
feat = pixel_unshuffle(x, scale=4)
|
111 |
-
elif self.resrgan_scale == 2:
|
112 |
-
feat = pixel_unshuffle(x, scale=2)
|
113 |
-
else:
|
114 |
-
feat = x
|
115 |
-
|
116 |
-
return self.model(feat)
|
117 |
-
|
118 |
-
|
119 |
-
class RRDB(nn.Module):
|
120 |
-
"""
|
121 |
-
Residual in Residual Dense Block
|
122 |
-
(ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks)
|
123 |
-
"""
|
124 |
-
|
125 |
-
def __init__(
|
126 |
-
self,
|
127 |
-
nf,
|
128 |
-
nr=3,
|
129 |
-
kernel_size=3,
|
130 |
-
gc=32,
|
131 |
-
stride=1,
|
132 |
-
bias=1,
|
133 |
-
pad_type="zero",
|
134 |
-
norm_type=None,
|
135 |
-
act_type="leakyrelu",
|
136 |
-
mode="CNA",
|
137 |
-
convtype="Conv2D",
|
138 |
-
spectral_norm=False,
|
139 |
-
gaussian_noise=False,
|
140 |
-
plus=False,
|
141 |
-
):
|
142 |
-
super(RRDB, self).__init__()
|
143 |
-
# This is for backwards compatibility with existing models
|
144 |
-
if nr == 3:
|
145 |
-
self.RDB1 = ResidualDenseBlock_5C(
|
146 |
-
nf,
|
147 |
-
kernel_size,
|
148 |
-
gc,
|
149 |
-
stride,
|
150 |
-
bias,
|
151 |
-
pad_type,
|
152 |
-
norm_type,
|
153 |
-
act_type,
|
154 |
-
mode,
|
155 |
-
convtype,
|
156 |
-
spectral_norm=spectral_norm,
|
157 |
-
gaussian_noise=gaussian_noise,
|
158 |
-
plus=plus,
|
159 |
-
)
|
160 |
-
self.RDB2 = ResidualDenseBlock_5C(
|
161 |
-
nf,
|
162 |
-
kernel_size,
|
163 |
-
gc,
|
164 |
-
stride,
|
165 |
-
bias,
|
166 |
-
pad_type,
|
167 |
-
norm_type,
|
168 |
-
act_type,
|
169 |
-
mode,
|
170 |
-
convtype,
|
171 |
-
spectral_norm=spectral_norm,
|
172 |
-
gaussian_noise=gaussian_noise,
|
173 |
-
plus=plus,
|
174 |
-
)
|
175 |
-
self.RDB3 = ResidualDenseBlock_5C(
|
176 |
-
nf,
|
177 |
-
kernel_size,
|
178 |
-
gc,
|
179 |
-
stride,
|
180 |
-
bias,
|
181 |
-
pad_type,
|
182 |
-
norm_type,
|
183 |
-
act_type,
|
184 |
-
mode,
|
185 |
-
convtype,
|
186 |
-
spectral_norm=spectral_norm,
|
187 |
-
gaussian_noise=gaussian_noise,
|
188 |
-
plus=plus,
|
189 |
-
)
|
190 |
-
else:
|
191 |
-
RDB_list = [
|
192 |
-
ResidualDenseBlock_5C(
|
193 |
-
nf,
|
194 |
-
kernel_size,
|
195 |
-
gc,
|
196 |
-
stride,
|
197 |
-
bias,
|
198 |
-
pad_type,
|
199 |
-
norm_type,
|
200 |
-
act_type,
|
201 |
-
mode,
|
202 |
-
convtype,
|
203 |
-
spectral_norm=spectral_norm,
|
204 |
-
gaussian_noise=gaussian_noise,
|
205 |
-
plus=plus,
|
206 |
-
)
|
207 |
-
for _ in range(nr)
|
208 |
-
]
|
209 |
-
self.RDBs = nn.Sequential(*RDB_list)
|
210 |
-
|
211 |
-
def forward(self, x):
|
212 |
-
if hasattr(self, "RDB1"):
|
213 |
-
out = self.RDB1(x)
|
214 |
-
out = self.RDB2(out)
|
215 |
-
out = self.RDB3(out)
|
216 |
-
else:
|
217 |
-
out = self.RDBs(x)
|
218 |
-
return out * 0.2 + x
|
219 |
|
220 |
|
221 |
class ResidualDenseBlock_5C(nn.Module):
|
@@ -229,642 +34,100 @@ class ResidualDenseBlock_5C(nn.Module):
|
|
229 |
{Rakotonirina} and A. {Rasoanaivo}
|
230 |
"""
|
231 |
|
232 |
-
def __init__(
|
233 |
-
|
234 |
-
nf=64,
|
235 |
-
kernel_size=3,
|
236 |
-
gc=32,
|
237 |
-
stride=1,
|
238 |
-
bias=1,
|
239 |
-
pad_type="zero",
|
240 |
-
norm_type=None,
|
241 |
-
act_type="leakyrelu",
|
242 |
-
mode="CNA",
|
243 |
-
convtype="Conv2D",
|
244 |
-
spectral_norm=False,
|
245 |
-
gaussian_noise=False,
|
246 |
-
plus=False,
|
247 |
-
):
|
248 |
-
super(ResidualDenseBlock_5C, self).__init__()
|
249 |
|
250 |
-
self.
|
251 |
-
self.
|
|
|
|
|
|
|
|
|
252 |
|
253 |
-
|
254 |
-
nf,
|
255 |
-
gc,
|
256 |
-
kernel_size,
|
257 |
-
stride,
|
258 |
-
bias=bias,
|
259 |
-
pad_type=pad_type,
|
260 |
-
norm_type=norm_type,
|
261 |
-
act_type=act_type,
|
262 |
-
mode=mode,
|
263 |
-
convtype=convtype,
|
264 |
-
spectral_norm=spectral_norm,
|
265 |
-
)
|
266 |
-
self.conv2 = conv_block(
|
267 |
-
nf + gc,
|
268 |
-
gc,
|
269 |
-
kernel_size,
|
270 |
-
stride,
|
271 |
-
bias=bias,
|
272 |
-
pad_type=pad_type,
|
273 |
-
norm_type=norm_type,
|
274 |
-
act_type=act_type,
|
275 |
-
mode=mode,
|
276 |
-
convtype=convtype,
|
277 |
-
spectral_norm=spectral_norm,
|
278 |
-
)
|
279 |
-
self.conv3 = conv_block(
|
280 |
-
nf + 2 * gc,
|
281 |
-
gc,
|
282 |
-
kernel_size,
|
283 |
-
stride,
|
284 |
-
bias=bias,
|
285 |
-
pad_type=pad_type,
|
286 |
-
norm_type=norm_type,
|
287 |
-
act_type=act_type,
|
288 |
-
mode=mode,
|
289 |
-
convtype=convtype,
|
290 |
-
spectral_norm=spectral_norm,
|
291 |
-
)
|
292 |
-
self.conv4 = conv_block(
|
293 |
-
nf + 3 * gc,
|
294 |
-
gc,
|
295 |
-
kernel_size,
|
296 |
-
stride,
|
297 |
-
bias=bias,
|
298 |
-
pad_type=pad_type,
|
299 |
-
norm_type=norm_type,
|
300 |
-
act_type=act_type,
|
301 |
-
mode=mode,
|
302 |
-
convtype=convtype,
|
303 |
-
spectral_norm=spectral_norm,
|
304 |
-
)
|
305 |
-
if mode == "CNA":
|
306 |
-
last_act = None
|
307 |
-
else:
|
308 |
-
last_act = act_type
|
309 |
-
self.conv5 = conv_block(
|
310 |
-
nf + 4 * gc,
|
311 |
-
nf,
|
312 |
-
3,
|
313 |
-
stride,
|
314 |
-
bias=bias,
|
315 |
-
pad_type=pad_type,
|
316 |
-
norm_type=norm_type,
|
317 |
-
act_type=last_act,
|
318 |
-
mode=mode,
|
319 |
-
convtype=convtype,
|
320 |
-
spectral_norm=spectral_norm,
|
321 |
-
)
|
322 |
-
|
323 |
-
def forward(self, x):
|
324 |
x1 = self.conv1(x)
|
325 |
x2 = self.conv2(torch.cat((x, x1), 1))
|
326 |
-
if self.conv1x1:
|
327 |
-
x2 = x2 + self.conv1x1(x)
|
328 |
x3 = self.conv3(torch.cat((x, x1, x2), 1))
|
329 |
x4 = self.conv4(torch.cat((x, x1, x2, x3), 1))
|
330 |
-
if self.conv1x1:
|
331 |
-
x4 = x4 + x2
|
332 |
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
|
333 |
-
|
334 |
-
return self.noise(x5.mul(0.2) + x)
|
335 |
-
else:
|
336 |
-
return x5 * 0.2 + x
|
337 |
-
|
338 |
-
|
339 |
-
####################
|
340 |
-
# ESRGANplus
|
341 |
-
####################
|
342 |
-
|
343 |
-
|
344 |
-
class GaussianNoise(nn.Module):
|
345 |
-
def __init__(self, sigma=0.1, is_relative_detach=False):
|
346 |
-
super().__init__()
|
347 |
-
self.sigma = sigma
|
348 |
-
self.is_relative_detach = is_relative_detach
|
349 |
-
self.noise = torch.tensor(0, dtype=torch.float)
|
350 |
-
|
351 |
-
def forward(self, x):
|
352 |
-
if self.training and self.sigma != 0:
|
353 |
-
self.noise = self.noise.to(device=x.device, dtype=x.device)
|
354 |
-
scale = self.sigma * x.detach() if self.is_relative_detach else self.sigma * x
|
355 |
-
sampled_noise = self.noise.repeat(*x.size()).normal_() * scale
|
356 |
-
x = x + sampled_noise
|
357 |
-
return x
|
358 |
|
359 |
|
360 |
-
|
361 |
-
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
|
362 |
-
|
363 |
-
|
364 |
-
####################
|
365 |
-
# SRVGGNetCompact
|
366 |
-
####################
|
367 |
-
|
368 |
-
|
369 |
-
class SRVGGNetCompact(nn.Module):
|
370 |
-
"""A compact VGG-style network structure for super-resolution.
|
371 |
-
This class is copied from https://github.com/xinntao/Real-ESRGAN
|
372 |
-
"""
|
373 |
-
|
374 |
-
def __init__(
|
375 |
-
self,
|
376 |
-
num_in_ch=3,
|
377 |
-
num_out_ch=3,
|
378 |
-
num_feat=64,
|
379 |
-
num_conv=16,
|
380 |
-
upscale=4,
|
381 |
-
act_type="prelu",
|
382 |
-
):
|
383 |
-
super(SRVGGNetCompact, self).__init__()
|
384 |
-
self.num_in_ch = num_in_ch
|
385 |
-
self.num_out_ch = num_out_ch
|
386 |
-
self.num_feat = num_feat
|
387 |
-
self.num_conv = num_conv
|
388 |
-
self.upscale = upscale
|
389 |
-
self.act_type = act_type
|
390 |
-
|
391 |
-
self.body = nn.ModuleList()
|
392 |
-
# the first conv
|
393 |
-
self.body.append(nn.Conv2d(num_in_ch, num_feat, 3, 1, 1))
|
394 |
-
# the first activation
|
395 |
-
if act_type == "relu":
|
396 |
-
activation = nn.ReLU(inplace=True)
|
397 |
-
elif act_type == "prelu":
|
398 |
-
activation = nn.PReLU(num_parameters=num_feat)
|
399 |
-
elif act_type == "leakyrelu":
|
400 |
-
activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
401 |
-
self.body.append(activation)
|
402 |
-
|
403 |
-
# the body structure
|
404 |
-
for _ in range(num_conv):
|
405 |
-
self.body.append(nn.Conv2d(num_feat, num_feat, 3, 1, 1))
|
406 |
-
# activation
|
407 |
-
if act_type == "relu":
|
408 |
-
activation = nn.ReLU(inplace=True)
|
409 |
-
elif act_type == "prelu":
|
410 |
-
activation = nn.PReLU(num_parameters=num_feat)
|
411 |
-
elif act_type == "leakyrelu":
|
412 |
-
activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
413 |
-
self.body.append(activation)
|
414 |
-
|
415 |
-
# the last conv
|
416 |
-
self.body.append(nn.Conv2d(num_feat, num_out_ch * upscale * upscale, 3, 1, 1))
|
417 |
-
# upsample
|
418 |
-
self.upsampler = nn.PixelShuffle(upscale)
|
419 |
-
|
420 |
-
def forward(self, x):
|
421 |
-
out = x
|
422 |
-
for i in range(0, len(self.body)):
|
423 |
-
out = self.body[i](out)
|
424 |
-
|
425 |
-
out = self.upsampler(out)
|
426 |
-
# add the nearest upsampled image, so that the network learns the residual
|
427 |
-
base = F.interpolate(x, scale_factor=self.upscale, mode="nearest")
|
428 |
-
out += base
|
429 |
-
return out
|
430 |
-
|
431 |
-
|
432 |
-
####################
|
433 |
-
# Upsampler
|
434 |
-
####################
|
435 |
-
|
436 |
-
|
437 |
-
class Upsample(nn.Module):
|
438 |
-
r"""Upsamples a given multi-channel 1D (temporal), 2D (spatial) or 3D (volumetric) data.
|
439 |
-
The input data is assumed to be of the form
|
440 |
-
`minibatch x channels x [optional depth] x [optional height] x width`.
|
441 |
-
"""
|
442 |
-
|
443 |
-
def __init__(self, size=None, scale_factor=None, mode="nearest", align_corners=None):
|
444 |
-
super(Upsample, self).__init__()
|
445 |
-
if isinstance(scale_factor, tuple):
|
446 |
-
self.scale_factor = tuple(float(factor) for factor in scale_factor)
|
447 |
-
else:
|
448 |
-
self.scale_factor = float(scale_factor) if scale_factor else None
|
449 |
-
self.mode = mode
|
450 |
-
self.size = size
|
451 |
-
self.align_corners = align_corners
|
452 |
-
|
453 |
-
def forward(self, x):
|
454 |
-
return nn.functional.interpolate(
|
455 |
-
x,
|
456 |
-
size=self.size,
|
457 |
-
scale_factor=self.scale_factor,
|
458 |
-
mode=self.mode,
|
459 |
-
align_corners=self.align_corners,
|
460 |
-
)
|
461 |
-
|
462 |
-
def extra_repr(self):
|
463 |
-
if self.scale_factor is not None:
|
464 |
-
info = f"scale_factor={self.scale_factor}"
|
465 |
-
else:
|
466 |
-
info = f"size={self.size}"
|
467 |
-
info += f", mode={self.mode}"
|
468 |
-
return info
|
469 |
-
|
470 |
-
|
471 |
-
def pixel_unshuffle(x, scale):
|
472 |
-
"""Pixel unshuffle.
|
473 |
-
Args:
|
474 |
-
x (Tensor): Input feature with shape (b, c, hh, hw).
|
475 |
-
scale (int): Downsample ratio.
|
476 |
-
Returns:
|
477 |
-
Tensor: the pixel unshuffled feature.
|
478 |
-
"""
|
479 |
-
b, c, hh, hw = x.size()
|
480 |
-
out_channel = c * (scale**2)
|
481 |
-
assert hh % scale == 0 and hw % scale == 0
|
482 |
-
h = hh // scale
|
483 |
-
w = hw // scale
|
484 |
-
x_view = x.view(b, c, h, scale, w, scale)
|
485 |
-
return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w)
|
486 |
-
|
487 |
-
|
488 |
-
def pixelshuffle_block(
|
489 |
-
in_nc,
|
490 |
-
out_nc,
|
491 |
-
upscale_factor=2,
|
492 |
-
kernel_size=3,
|
493 |
-
stride=1,
|
494 |
-
bias=True,
|
495 |
-
pad_type="zero",
|
496 |
-
norm_type=None,
|
497 |
-
act_type="relu",
|
498 |
-
convtype="Conv2D",
|
499 |
-
):
|
500 |
-
"""
|
501 |
-
Pixel shuffle layer
|
502 |
-
(Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional
|
503 |
-
Neural Network, CVPR17)
|
504 |
"""
|
505 |
-
|
506 |
-
|
507 |
-
out_nc * (upscale_factor**2),
|
508 |
-
kernel_size,
|
509 |
-
stride,
|
510 |
-
bias=bias,
|
511 |
-
pad_type=pad_type,
|
512 |
-
norm_type=None,
|
513 |
-
act_type=None,
|
514 |
-
convtype=convtype,
|
515 |
-
)
|
516 |
-
pixel_shuffle = nn.PixelShuffle(upscale_factor)
|
517 |
-
|
518 |
-
n = norm(norm_type, out_nc) if norm_type else None
|
519 |
-
a = act(act_type) if act_type else None
|
520 |
-
return sequential(conv, pixel_shuffle, n, a)
|
521 |
-
|
522 |
-
|
523 |
-
def upconv_block(
|
524 |
-
in_nc,
|
525 |
-
out_nc,
|
526 |
-
upscale_factor=2,
|
527 |
-
kernel_size=3,
|
528 |
-
stride=1,
|
529 |
-
bias=True,
|
530 |
-
pad_type="zero",
|
531 |
-
norm_type=None,
|
532 |
-
act_type="relu",
|
533 |
-
mode="nearest",
|
534 |
-
convtype="Conv2D",
|
535 |
-
):
|
536 |
-
"""Upconv layer"""
|
537 |
-
upscale_factor = (1, upscale_factor, upscale_factor) if convtype == "Conv3D" else upscale_factor
|
538 |
-
upsample = Upsample(scale_factor=upscale_factor, mode=mode)
|
539 |
-
conv = conv_block(
|
540 |
-
in_nc,
|
541 |
-
out_nc,
|
542 |
-
kernel_size,
|
543 |
-
stride,
|
544 |
-
bias=bias,
|
545 |
-
pad_type=pad_type,
|
546 |
-
norm_type=norm_type,
|
547 |
-
act_type=act_type,
|
548 |
-
convtype=convtype,
|
549 |
-
)
|
550 |
-
return sequential(upsample, conv)
|
551 |
-
|
552 |
-
|
553 |
-
####################
|
554 |
-
# Basic blocks
|
555 |
-
####################
|
556 |
-
|
557 |
-
|
558 |
-
def make_layer(basic_block, num_basic_block, **kwarg):
|
559 |
-
"""Make layers by stacking the same blocks.
|
560 |
-
Args:
|
561 |
-
basic_block (nn.module): nn.module class for basic block. (block)
|
562 |
-
num_basic_block (int): number of blocks. (n_layers)
|
563 |
-
Returns:
|
564 |
-
nn.Sequential: Stacked blocks in nn.Sequential.
|
565 |
"""
|
566 |
-
layers = []
|
567 |
-
for _ in range(num_basic_block):
|
568 |
-
layers.append(basic_block(**kwarg))
|
569 |
-
return nn.Sequential(*layers)
|
570 |
-
|
571 |
-
|
572 |
-
def act(act_type, inplace=True, neg_slope=0.2, n_prelu=1, beta=1.0):
|
573 |
-
"""activation helper"""
|
574 |
-
act_type = act_type.lower()
|
575 |
-
if act_type == "relu":
|
576 |
-
layer = nn.ReLU(inplace)
|
577 |
-
elif act_type in ("leakyrelu", "lrelu"):
|
578 |
-
layer = nn.LeakyReLU(neg_slope, inplace)
|
579 |
-
elif act_type == "prelu":
|
580 |
-
layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope)
|
581 |
-
elif act_type == "tanh": # [-1, 1] range output
|
582 |
-
layer = nn.Tanh()
|
583 |
-
elif act_type == "sigmoid": # [0, 1] range output
|
584 |
-
layer = nn.Sigmoid()
|
585 |
-
else:
|
586 |
-
raise NotImplementedError(f"activation layer [{act_type}] is not found")
|
587 |
-
return layer
|
588 |
-
|
589 |
-
|
590 |
-
class Identity(nn.Module):
|
591 |
-
def __init__(self, *kwargs):
|
592 |
-
super(Identity, self).__init__()
|
593 |
|
594 |
-
def
|
595 |
-
|
|
|
|
|
|
|
596 |
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
layer = nn.BatchNorm2d(nc, affine=True)
|
603 |
-
elif norm_type == "instance":
|
604 |
-
layer = nn.InstanceNorm2d(nc, affine=False)
|
605 |
-
elif norm_type == "none":
|
606 |
-
|
607 |
-
def norm_layer(x):
|
608 |
-
return Identity()
|
609 |
-
else:
|
610 |
-
raise NotImplementedError(f"normalization layer [{norm_type}] is not found")
|
611 |
-
return layer
|
612 |
|
613 |
|
614 |
-
|
615 |
-
"""
|
616 |
-
pad_type = pad_type.lower()
|
617 |
-
if padding == 0:
|
618 |
-
return None
|
619 |
-
if pad_type == "reflect":
|
620 |
-
layer = nn.ReflectionPad2d(padding)
|
621 |
-
elif pad_type == "replicate":
|
622 |
-
layer = nn.ReplicationPad2d(padding)
|
623 |
-
elif pad_type == "zero":
|
624 |
-
layer = nn.ZeroPad2d(padding)
|
625 |
-
else:
|
626 |
-
raise NotImplementedError(f"padding layer [{pad_type}] is not implemented")
|
627 |
-
return layer
|
628 |
|
|
|
|
|
629 |
|
630 |
-
def
|
631 |
-
|
632 |
-
padding = (kernel_size - 1) // 2
|
633 |
-
return padding
|
634 |
|
635 |
|
636 |
class ShortcutBlock(nn.Module):
|
637 |
"""Elementwise sum the output of a submodule to its input"""
|
638 |
|
639 |
-
def __init__(self, submodule):
|
640 |
-
super(
|
641 |
self.sub = submodule
|
642 |
|
643 |
-
def forward(self, x):
|
644 |
-
|
645 |
-
return output
|
646 |
-
|
647 |
-
def __repr__(self):
|
648 |
-
return "Identity + \n|" + self.sub.__repr__().replace("\n", "\n|")
|
649 |
-
|
650 |
-
|
651 |
-
def sequential(*args):
|
652 |
-
"""Flatten Sequential. It unwraps nn.Sequential."""
|
653 |
-
if len(args) == 1:
|
654 |
-
if isinstance(args[0], OrderedDict):
|
655 |
-
raise NotImplementedError("sequential does not support OrderedDict input.")
|
656 |
-
return args[0] # No sequential is needed.
|
657 |
-
modules = []
|
658 |
-
for module in args:
|
659 |
-
if isinstance(module, nn.Sequential):
|
660 |
-
for submodule in module.children():
|
661 |
-
modules.append(submodule)
|
662 |
-
elif isinstance(module, nn.Module):
|
663 |
-
modules.append(module)
|
664 |
-
return nn.Sequential(*modules)
|
665 |
-
|
666 |
|
667 |
-
def conv_block(
|
668 |
-
in_nc,
|
669 |
-
out_nc,
|
670 |
-
kernel_size,
|
671 |
-
stride=1,
|
672 |
-
dilation=1,
|
673 |
-
groups=1,
|
674 |
-
bias=True,
|
675 |
-
pad_type="zero",
|
676 |
-
norm_type=None,
|
677 |
-
act_type="relu",
|
678 |
-
mode="CNA",
|
679 |
-
convtype="Conv2D",
|
680 |
-
spectral_norm=False,
|
681 |
-
):
|
682 |
-
"""Conv layer with padding, normalization, activation"""
|
683 |
-
assert mode in ["CNA", "NAC", "CNAC"], f"Wrong conv mode [{mode}]"
|
684 |
-
padding = get_valid_padding(kernel_size, dilation)
|
685 |
-
p = pad(pad_type, padding) if pad_type and pad_type != "zero" else None
|
686 |
-
padding = padding if pad_type == "zero" else 0
|
687 |
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
padding=padding,
|
711 |
-
dilation=dilation,
|
712 |
-
bias=bias,
|
713 |
-
groups=groups,
|
714 |
-
)
|
715 |
-
elif convtype == "Conv3D":
|
716 |
-
c = nn.Conv3d(
|
717 |
-
in_nc,
|
718 |
-
out_nc,
|
719 |
-
kernel_size=kernel_size,
|
720 |
-
stride=stride,
|
721 |
-
padding=padding,
|
722 |
-
dilation=dilation,
|
723 |
-
bias=bias,
|
724 |
-
groups=groups,
|
725 |
-
)
|
726 |
-
else:
|
727 |
-
c = nn.Conv2d(
|
728 |
-
in_nc,
|
729 |
-
out_nc,
|
730 |
-
kernel_size=kernel_size,
|
731 |
-
stride=stride,
|
732 |
-
padding=padding,
|
733 |
-
dilation=dilation,
|
734 |
-
bias=bias,
|
735 |
-
groups=groups,
|
736 |
)
|
737 |
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
a = act(act_type) if act_type else None
|
742 |
-
if "CNA" in mode:
|
743 |
-
n = norm(norm_type, out_nc) if norm_type else None
|
744 |
-
return sequential(p, c, n, a)
|
745 |
-
elif mode == "NAC":
|
746 |
-
if norm_type is None and act_type is not None:
|
747 |
-
a = act(act_type, inplace=False)
|
748 |
-
n = norm(norm_type, in_nc) if norm_type else None
|
749 |
-
return sequential(n, a, p, c)
|
750 |
-
|
751 |
-
|
752 |
-
def load_models(
|
753 |
-
model_path: Path,
|
754 |
-
command_path: str = None,
|
755 |
-
) -> list:
|
756 |
-
"""
|
757 |
-
A one-and done loader to try finding the desired models in specified directories.
|
758 |
-
|
759 |
-
@param download_name: Specify to download from model_url immediately.
|
760 |
-
@param model_url: If no other models are found, this will be downloaded on upscale.
|
761 |
-
@param model_path: The location to store/find models in.
|
762 |
-
@param command_path: A command-line argument to search for models in first.
|
763 |
-
@param ext_filter: An optional list of filename extensions to filter by
|
764 |
-
@return: A list of paths containing the desired model(s)
|
765 |
-
"""
|
766 |
-
output = []
|
767 |
-
|
768 |
-
try:
|
769 |
-
places = []
|
770 |
-
if command_path is not None and command_path != model_path:
|
771 |
-
pretrained_path = os.path.join(command_path, "experiments/pretrained_models")
|
772 |
-
if os.path.exists(pretrained_path):
|
773 |
-
print(f"Appending path: {pretrained_path}")
|
774 |
-
places.append(pretrained_path)
|
775 |
-
elif os.path.exists(command_path):
|
776 |
-
places.append(command_path)
|
777 |
-
|
778 |
-
places.append(model_path)
|
779 |
-
|
780 |
-
except Exception:
|
781 |
-
pass
|
782 |
|
783 |
-
return output
|
784 |
|
785 |
-
|
786 |
-
|
787 |
-
# this code is copied from https://github.com/victorca25/iNNfer
|
788 |
-
if "conv_first.weight" in state_dict:
|
789 |
-
crt_net = {}
|
790 |
-
items = list(state_dict)
|
791 |
-
|
792 |
-
crt_net["model.0.weight"] = state_dict["conv_first.weight"]
|
793 |
-
crt_net["model.0.bias"] = state_dict["conv_first.bias"]
|
794 |
-
|
795 |
-
for k in items.copy():
|
796 |
-
if "RDB" in k:
|
797 |
-
ori_k = k.replace("RRDB_trunk.", "model.1.sub.")
|
798 |
-
if ".weight" in k:
|
799 |
-
ori_k = ori_k.replace(".weight", ".0.weight")
|
800 |
-
elif ".bias" in k:
|
801 |
-
ori_k = ori_k.replace(".bias", ".0.bias")
|
802 |
-
crt_net[ori_k] = state_dict[k]
|
803 |
-
items.remove(k)
|
804 |
-
|
805 |
-
crt_net["model.1.sub.23.weight"] = state_dict["trunk_conv.weight"]
|
806 |
-
crt_net["model.1.sub.23.bias"] = state_dict["trunk_conv.bias"]
|
807 |
-
crt_net["model.3.weight"] = state_dict["upconv1.weight"]
|
808 |
-
crt_net["model.3.bias"] = state_dict["upconv1.bias"]
|
809 |
-
crt_net["model.6.weight"] = state_dict["upconv2.weight"]
|
810 |
-
crt_net["model.6.bias"] = state_dict["upconv2.bias"]
|
811 |
-
crt_net["model.8.weight"] = state_dict["HRconv.weight"]
|
812 |
-
crt_net["model.8.bias"] = state_dict["HRconv.bias"]
|
813 |
-
crt_net["model.10.weight"] = state_dict["conv_last.weight"]
|
814 |
-
crt_net["model.10.bias"] = state_dict["conv_last.bias"]
|
815 |
-
state_dict = crt_net
|
816 |
-
return state_dict
|
817 |
-
|
818 |
-
|
819 |
-
def resrgan2normal(state_dict, nb=23):
|
820 |
-
# this code is copied from https://github.com/victorca25/iNNfer
|
821 |
-
if "conv_first.weight" in state_dict and "body.0.rdb1.conv1.weight" in state_dict:
|
822 |
-
re8x = 0
|
823 |
-
crt_net = {}
|
824 |
-
items = list(state_dict)
|
825 |
-
|
826 |
-
crt_net["model.0.weight"] = state_dict["conv_first.weight"]
|
827 |
-
crt_net["model.0.bias"] = state_dict["conv_first.bias"]
|
828 |
-
|
829 |
-
for k in items.copy():
|
830 |
-
if "rdb" in k:
|
831 |
-
ori_k = k.replace("body.", "model.1.sub.")
|
832 |
-
ori_k = ori_k.replace(".rdb", ".RDB")
|
833 |
-
if ".weight" in k:
|
834 |
-
ori_k = ori_k.replace(".weight", ".0.weight")
|
835 |
-
elif ".bias" in k:
|
836 |
-
ori_k = ori_k.replace(".bias", ".0.bias")
|
837 |
-
crt_net[ori_k] = state_dict[k]
|
838 |
-
items.remove(k)
|
839 |
-
|
840 |
-
crt_net[f"model.1.sub.{nb}.weight"] = state_dict["conv_body.weight"]
|
841 |
-
crt_net[f"model.1.sub.{nb}.bias"] = state_dict["conv_body.bias"]
|
842 |
-
crt_net["model.3.weight"] = state_dict["conv_up1.weight"]
|
843 |
-
crt_net["model.3.bias"] = state_dict["conv_up1.bias"]
|
844 |
-
crt_net["model.6.weight"] = state_dict["conv_up2.weight"]
|
845 |
-
crt_net["model.6.bias"] = state_dict["conv_up2.bias"]
|
846 |
-
|
847 |
-
if "conv_up3.weight" in state_dict:
|
848 |
-
# modification supporting: https://github.com/ai-forever/Real-ESRGAN/blob/main/RealESRGAN/rrdbnet_arch.py
|
849 |
-
re8x = 3
|
850 |
-
crt_net["model.9.weight"] = state_dict["conv_up3.weight"]
|
851 |
-
crt_net["model.9.bias"] = state_dict["conv_up3.bias"]
|
852 |
-
|
853 |
-
crt_net[f"model.{8+re8x}.weight"] = state_dict["conv_hr.weight"]
|
854 |
-
crt_net[f"model.{8+re8x}.bias"] = state_dict["conv_hr.bias"]
|
855 |
-
crt_net[f"model.{10+re8x}.weight"] = state_dict["conv_last.weight"]
|
856 |
-
crt_net[f"model.{10+re8x}.bias"] = state_dict["conv_last.bias"]
|
857 |
-
|
858 |
-
state_dict = crt_net
|
859 |
-
return state_dict
|
860 |
-
|
861 |
-
|
862 |
-
def infer_params(state_dict):
|
863 |
-
# this code is copied from https://github.com/victorca25/iNNfer
|
864 |
scale2x = 0
|
865 |
scalemin = 6
|
866 |
n_uplayer = 0
|
867 |
-
|
|
|
868 |
|
869 |
for block in list(state_dict):
|
870 |
parts = block.split(".")
|
@@ -878,65 +141,66 @@ def infer_params(state_dict):
|
|
878 |
if part_num > n_uplayer:
|
879 |
n_uplayer = part_num
|
880 |
out_nc = state_dict[block].shape[0]
|
881 |
-
|
882 |
-
plus = True
|
883 |
|
884 |
nf = state_dict["model.0.weight"].shape[0]
|
885 |
in_nc = state_dict["model.0.weight"].shape[1]
|
886 |
-
out_nc = out_nc
|
887 |
scale = 2**scale2x
|
888 |
|
889 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
890 |
|
891 |
|
892 |
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L64
|
893 |
-
Grid
|
|
|
|
|
|
|
|
|
|
|
|
|
894 |
|
895 |
|
896 |
-
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L67
|
897 |
-
def split_grid(image, tile_w=512, tile_h=512, overlap=64):
|
898 |
w = image.width
|
899 |
h = image.height
|
900 |
|
901 |
non_overlap_width = tile_w - overlap
|
902 |
non_overlap_height = tile_h - overlap
|
903 |
|
904 |
-
cols = math.ceil((w - overlap) / non_overlap_width)
|
905 |
-
rows = math.ceil((h - overlap) / non_overlap_height)
|
906 |
|
907 |
dx = (w - tile_w) / (cols - 1) if cols > 1 else 0
|
908 |
dy = (h - tile_h) / (rows - 1) if rows > 1 else 0
|
909 |
|
910 |
grid = Grid([], tile_w, tile_h, w, h, overlap)
|
911 |
for row in range(rows):
|
912 |
-
row_images = []
|
913 |
-
|
914 |
-
|
915 |
-
|
916 |
-
if y + tile_h >= h:
|
917 |
-
y = h - tile_h
|
918 |
-
|
919 |
for col in range(cols):
|
920 |
-
|
921 |
-
|
922 |
-
|
923 |
-
|
924 |
-
|
925 |
-
tile = image.crop((x, y, x + tile_w, y + tile_h))
|
926 |
-
|
927 |
-
row_images.append([x, tile_w, tile])
|
928 |
-
|
929 |
-
grid.tiles.append([y, tile_h, row_images])
|
930 |
|
931 |
return grid
|
932 |
|
933 |
|
934 |
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L104
|
935 |
-
def combine_grid(grid):
|
936 |
-
def make_mask_image(r):
|
937 |
r = r * 255 / grid.overlap
|
938 |
-
|
939 |
-
return Image.fromarray(r, "L")
|
940 |
|
941 |
mask_w = make_mask_image(
|
942 |
np.arange(grid.overlap, dtype=np.float32).reshape((1, grid.overlap)).repeat(grid.tile_h, axis=0)
|
@@ -975,10 +239,10 @@ def combine_grid(grid):
|
|
975 |
|
976 |
class UpscalerESRGAN:
|
977 |
def __init__(self, model_path: Path, device: torch.device, dtype: torch.dtype):
|
978 |
-
self.device = device
|
979 |
-
self.dtype = dtype
|
980 |
self.model_path = model_path
|
|
|
981 |
self.model = self.load_model(model_path)
|
|
|
982 |
|
983 |
def __call__(self, img: Image.Image) -> Image.Image:
|
984 |
return self.upscale_without_tiling(img)
|
@@ -988,51 +252,25 @@ class UpscalerESRGAN:
|
|
988 |
self.dtype = dtype
|
989 |
self.model.to(device=device, dtype=dtype)
|
990 |
|
991 |
-
def load_model(self, path: Path) ->
|
992 |
filename = path
|
993 |
-
state_dict = torch.load(filename, weights_only=True, map_location=self.device)
|
994 |
-
|
995 |
-
|
996 |
-
|
997 |
-
elif "params" in state_dict:
|
998 |
-
state_dict = state_dict["params"]
|
999 |
-
num_conv = 16 if "realesr-animevideov3" in filename else 32
|
1000 |
-
model = SRVGGNetCompact(
|
1001 |
-
num_in_ch=3,
|
1002 |
-
num_out_ch=3,
|
1003 |
-
num_feat=64,
|
1004 |
-
num_conv=num_conv,
|
1005 |
-
upscale=4,
|
1006 |
-
act_type="prelu",
|
1007 |
-
)
|
1008 |
-
model.load_state_dict(state_dict)
|
1009 |
-
model.eval()
|
1010 |
-
return model
|
1011 |
-
|
1012 |
-
if "body.0.rdb1.conv1.weight" in state_dict and "conv_first.weight" in state_dict:
|
1013 |
-
nb = 6 if "RealESRGAN_x4plus_anime_6B" in filename else 23
|
1014 |
-
state_dict = resrgan2normal(state_dict, nb)
|
1015 |
-
elif "conv_first.weight" in state_dict:
|
1016 |
-
state_dict = mod2normal(state_dict)
|
1017 |
-
elif "model.0.weight" not in state_dict:
|
1018 |
-
raise Exception("The file is not a recognized ESRGAN model.")
|
1019 |
-
|
1020 |
-
in_nc, out_nc, nf, nb, plus, mscale = infer_params(state_dict)
|
1021 |
-
|
1022 |
-
model = RRDBNet(in_nc=in_nc, out_nc=out_nc, nf=nf, nb=nb, upscale=mscale, plus=plus)
|
1023 |
model.load_state_dict(state_dict)
|
1024 |
model.eval()
|
1025 |
|
1026 |
return model
|
1027 |
|
1028 |
def upscale_without_tiling(self, img: Image.Image) -> Image.Image:
|
1029 |
-
|
1030 |
-
|
1031 |
-
|
1032 |
-
|
1033 |
-
|
1034 |
with torch.no_grad():
|
1035 |
-
output = self.model(
|
1036 |
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
|
1037 |
output = 255.0 * np.moveaxis(output, 0, 2)
|
1038 |
output = output.astype(np.uint8)
|
@@ -1041,20 +279,19 @@ class UpscalerESRGAN:
|
|
1041 |
|
1042 |
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/esrgan_model.py#L208
|
1043 |
def upscale_with_tiling(self, img: Image.Image) -> Image.Image:
|
|
|
1044 |
grid = split_grid(img)
|
1045 |
-
newtiles = []
|
1046 |
-
scale_factor = 1
|
1047 |
|
1048 |
for y, h, row in grid.tiles:
|
1049 |
-
newrow = []
|
1050 |
for tiledata in row:
|
1051 |
x, w, tile = tiledata
|
1052 |
-
|
1053 |
output = self.upscale_without_tiling(tile)
|
1054 |
scale_factor = output.width // tile.width
|
1055 |
-
|
1056 |
-
|
1057 |
-
newtiles.append([y * scale_factor, h * scale_factor, newrow])
|
1058 |
|
1059 |
newgrid = Grid(
|
1060 |
newtiles,
|
|
|
|
|
1 |
"""
|
2 |
Modified from https://github.com/philz1337x/clarity-upscaler
|
3 |
which is a copy of https://github.com/AUTOMATIC1111/stable-diffusion-webui
|
|
|
6 |
"""
|
7 |
|
8 |
import math
|
|
|
|
|
9 |
from pathlib import Path
|
10 |
+
from typing import NamedTuple
|
11 |
|
12 |
import numpy as np
|
13 |
+
import numpy.typing as npt
|
14 |
import torch
|
15 |
import torch.nn as nn
|
|
|
16 |
from PIL import Image
|
17 |
|
|
|
|
|
|
|
18 |
|
19 |
+
def conv_block(in_nc: int, out_nc: int) -> nn.Sequential:
|
20 |
+
return nn.Sequential(
|
21 |
+
nn.Conv2d(in_nc, out_nc, kernel_size=3, padding=1),
|
22 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
23 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
|
26 |
class ResidualDenseBlock_5C(nn.Module):
|
|
|
34 |
{Rakotonirina} and A. {Rasoanaivo}
|
35 |
"""
|
36 |
|
37 |
+
def __init__(self, nf: int = 64, gc: int = 32) -> None:
|
38 |
+
super().__init__() # type: ignore[reportUnknownMemberType]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
self.conv1 = conv_block(nf, gc)
|
41 |
+
self.conv2 = conv_block(nf + gc, gc)
|
42 |
+
self.conv3 = conv_block(nf + 2 * gc, gc)
|
43 |
+
self.conv4 = conv_block(nf + 3 * gc, gc)
|
44 |
+
# Wrapped in Sequential because of key in state dict.
|
45 |
+
self.conv5 = nn.Sequential(nn.Conv2d(nf + 4 * gc, nf, kernel_size=3, padding=1))
|
46 |
|
47 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
x1 = self.conv1(x)
|
49 |
x2 = self.conv2(torch.cat((x, x1), 1))
|
|
|
|
|
50 |
x3 = self.conv3(torch.cat((x, x1, x2), 1))
|
51 |
x4 = self.conv4(torch.cat((x, x1, x2, x3), 1))
|
|
|
|
|
52 |
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
|
53 |
+
return x5 * 0.2 + x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
|
56 |
+
class RRDB(nn.Module):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
"""
|
58 |
+
Residual in Residual Dense Block
|
59 |
+
(ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
def __init__(self, nf: int) -> None:
|
63 |
+
super().__init__() # type: ignore[reportUnknownMemberType]
|
64 |
+
self.RDB1 = ResidualDenseBlock_5C(nf)
|
65 |
+
self.RDB2 = ResidualDenseBlock_5C(nf)
|
66 |
+
self.RDB3 = ResidualDenseBlock_5C(nf)
|
67 |
|
68 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
69 |
+
out = self.RDB1(x)
|
70 |
+
out = self.RDB2(out)
|
71 |
+
out = self.RDB3(out)
|
72 |
+
return out * 0.2 + x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
|
75 |
+
class Upsample2x(nn.Module):
|
76 |
+
"""Upsample 2x."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
def __init__(self) -> None:
|
79 |
+
super().__init__() # type: ignore[reportUnknownMemberType]
|
80 |
|
81 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
82 |
+
return nn.functional.interpolate(x, scale_factor=2.0) # type: ignore
|
|
|
|
|
83 |
|
84 |
|
85 |
class ShortcutBlock(nn.Module):
|
86 |
"""Elementwise sum the output of a submodule to its input"""
|
87 |
|
88 |
+
def __init__(self, submodule: nn.Module) -> None:
|
89 |
+
super().__init__() # type: ignore[reportUnknownMemberType]
|
90 |
self.sub = submodule
|
91 |
|
92 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
93 |
+
return x + self.sub(x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
+
class RRDBNet(nn.Module):
|
97 |
+
def __init__(self, in_nc: int, out_nc: int, nf: int, nb: int) -> None:
|
98 |
+
super().__init__() # type: ignore[reportUnknownMemberType]
|
99 |
+
assert in_nc % 4 != 0 # in_nc is 3
|
100 |
+
|
101 |
+
self.model = nn.Sequential(
|
102 |
+
nn.Conv2d(in_nc, nf, kernel_size=3, padding=1),
|
103 |
+
ShortcutBlock(
|
104 |
+
nn.Sequential(
|
105 |
+
*(RRDB(nf) for _ in range(nb)),
|
106 |
+
nn.Conv2d(nf, nf, kernel_size=3, padding=1),
|
107 |
+
)
|
108 |
+
),
|
109 |
+
Upsample2x(),
|
110 |
+
nn.Conv2d(nf, nf, kernel_size=3, padding=1),
|
111 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
112 |
+
Upsample2x(),
|
113 |
+
nn.Conv2d(nf, nf, kernel_size=3, padding=1),
|
114 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
115 |
+
nn.Conv2d(nf, nf, kernel_size=3, padding=1),
|
116 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
117 |
+
nn.Conv2d(nf, out_nc, kernel_size=3, padding=1),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
)
|
119 |
|
120 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
121 |
+
return self.model(x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
|
|
123 |
|
124 |
+
def infer_params(state_dict: dict[str, torch.Tensor]) -> tuple[int, int, int, int, int]:
|
125 |
+
# this code is adapted from https://github.com/victorca25/iNNfer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
scale2x = 0
|
127 |
scalemin = 6
|
128 |
n_uplayer = 0
|
129 |
+
out_nc = 0
|
130 |
+
nb = 0
|
131 |
|
132 |
for block in list(state_dict):
|
133 |
parts = block.split(".")
|
|
|
141 |
if part_num > n_uplayer:
|
142 |
n_uplayer = part_num
|
143 |
out_nc = state_dict[block].shape[0]
|
144 |
+
assert "conv1x1" not in block # no ESRGANPlus
|
|
|
145 |
|
146 |
nf = state_dict["model.0.weight"].shape[0]
|
147 |
in_nc = state_dict["model.0.weight"].shape[1]
|
|
|
148 |
scale = 2**scale2x
|
149 |
|
150 |
+
assert out_nc > 0
|
151 |
+
assert nb > 0
|
152 |
+
|
153 |
+
return in_nc, out_nc, nf, nb, scale # 3, 3, 64, 23, 4
|
154 |
+
|
155 |
+
|
156 |
+
Tile = tuple[int, int, Image.Image]
|
157 |
+
Tiles = list[tuple[int, int, list[Tile]]]
|
158 |
|
159 |
|
160 |
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L64
|
161 |
+
class Grid(NamedTuple):
|
162 |
+
tiles: Tiles
|
163 |
+
tile_w: int
|
164 |
+
tile_h: int
|
165 |
+
image_w: int
|
166 |
+
image_h: int
|
167 |
+
overlap: int
|
168 |
|
169 |
|
170 |
+
# adapted from https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L67
|
171 |
+
def split_grid(image: Image.Image, tile_w: int = 512, tile_h: int = 512, overlap: int = 64) -> Grid:
|
172 |
w = image.width
|
173 |
h = image.height
|
174 |
|
175 |
non_overlap_width = tile_w - overlap
|
176 |
non_overlap_height = tile_h - overlap
|
177 |
|
178 |
+
cols = max(1, math.ceil((w - overlap) / non_overlap_width))
|
179 |
+
rows = max(1, math.ceil((h - overlap) / non_overlap_height))
|
180 |
|
181 |
dx = (w - tile_w) / (cols - 1) if cols > 1 else 0
|
182 |
dy = (h - tile_h) / (rows - 1) if rows > 1 else 0
|
183 |
|
184 |
grid = Grid([], tile_w, tile_h, w, h, overlap)
|
185 |
for row in range(rows):
|
186 |
+
row_images: list[Tile] = []
|
187 |
+
y1 = max(min(int(row * dy), h - tile_h), 0)
|
188 |
+
y2 = min(y1 + tile_h, h)
|
|
|
|
|
|
|
|
|
189 |
for col in range(cols):
|
190 |
+
x1 = max(min(int(col * dx), w - tile_w), 0)
|
191 |
+
x2 = min(x1 + tile_w, w)
|
192 |
+
tile = image.crop((x1, y1, x2, y2))
|
193 |
+
row_images.append((x1, tile_w, tile))
|
194 |
+
grid.tiles.append((y1, tile_h, row_images))
|
|
|
|
|
|
|
|
|
|
|
195 |
|
196 |
return grid
|
197 |
|
198 |
|
199 |
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L104
|
200 |
+
def combine_grid(grid: Grid):
|
201 |
+
def make_mask_image(r: npt.NDArray[np.float32]) -> Image.Image:
|
202 |
r = r * 255 / grid.overlap
|
203 |
+
return Image.fromarray(r.astype(np.uint8), "L")
|
|
|
204 |
|
205 |
mask_w = make_mask_image(
|
206 |
np.arange(grid.overlap, dtype=np.float32).reshape((1, grid.overlap)).repeat(grid.tile_h, axis=0)
|
|
|
239 |
|
240 |
class UpscalerESRGAN:
|
241 |
def __init__(self, model_path: Path, device: torch.device, dtype: torch.dtype):
|
|
|
|
|
242 |
self.model_path = model_path
|
243 |
+
self.device = device
|
244 |
self.model = self.load_model(model_path)
|
245 |
+
self.to(device, dtype)
|
246 |
|
247 |
def __call__(self, img: Image.Image) -> Image.Image:
|
248 |
return self.upscale_without_tiling(img)
|
|
|
252 |
self.dtype = dtype
|
253 |
self.model.to(device=device, dtype=dtype)
|
254 |
|
255 |
+
def load_model(self, path: Path) -> RRDBNet:
|
256 |
filename = path
|
257 |
+
state_dict: dict[str, torch.Tensor] = torch.load(filename, weights_only=True, map_location=self.device) # type: ignore
|
258 |
+
in_nc, out_nc, nf, nb, upscale = infer_params(state_dict)
|
259 |
+
assert upscale == 4, "Only 4x upscaling is supported"
|
260 |
+
model = RRDBNet(in_nc=in_nc, out_nc=out_nc, nf=nf, nb=nb)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
model.load_state_dict(state_dict)
|
262 |
model.eval()
|
263 |
|
264 |
return model
|
265 |
|
266 |
def upscale_without_tiling(self, img: Image.Image) -> Image.Image:
|
267 |
+
img_np = np.array(img)
|
268 |
+
img_np = img_np[:, :, ::-1]
|
269 |
+
img_np = np.ascontiguousarray(np.transpose(img_np, (2, 0, 1))) / 255
|
270 |
+
img_t = torch.from_numpy(img_np).float() # type: ignore
|
271 |
+
img_t = img_t.unsqueeze(0).to(device=self.device, dtype=self.dtype)
|
272 |
with torch.no_grad():
|
273 |
+
output = self.model(img_t)
|
274 |
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
|
275 |
output = 255.0 * np.moveaxis(output, 0, 2)
|
276 |
output = output.astype(np.uint8)
|
|
|
279 |
|
280 |
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/esrgan_model.py#L208
|
281 |
def upscale_with_tiling(self, img: Image.Image) -> Image.Image:
|
282 |
+
img = img.convert("RGB")
|
283 |
grid = split_grid(img)
|
284 |
+
newtiles: Tiles = []
|
285 |
+
scale_factor: int = 1
|
286 |
|
287 |
for y, h, row in grid.tiles:
|
288 |
+
newrow: list[Tile] = []
|
289 |
for tiledata in row:
|
290 |
x, w, tile = tiledata
|
|
|
291 |
output = self.upscale_without_tiling(tile)
|
292 |
scale_factor = output.width // tile.width
|
293 |
+
newrow.append((x * scale_factor, w * scale_factor, output))
|
294 |
+
newtiles.append((y * scale_factor, h * scale_factor, newrow))
|
|
|
295 |
|
296 |
newgrid = Grid(
|
297 |
newtiles,
|