from pathlib import Path
import gradio as gr
import pillow_heif
import spaces
import torch
from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download
from PIL import Image
from refiners.fluxion.utils import manual_seed
from refiners.foundationals.latent_diffusion import Solver, solvers
from enhancer import ESRGANUpscaler, ESRGANUpscalerCheckpoints
pillow_heif.register_heif_opener()
pillow_heif.register_avif_opener()
TITLE = """
🚀 NEW: all the Finegrain spaces are now reunited under the
Finegrain Editor. Give it a shot! 🚀
Image Enhancer Powered By Refiners
Turn low resolution images into high resolution versions with added generated details (your image will be modified).
This space is powered by Refiners, our open source micro-framework for simple foundation model adaptation.
If you enjoyed it, please consider starring Refiners on GitHub!
"""
CHECKPOINTS = ESRGANUpscalerCheckpoints(
unet=Path(
hf_hub_download(
repo_id="refiners/juggernaut.reborn.sd1_5.unet",
filename="model.safetensors",
revision="347d14c3c782c4959cc4d1bb1e336d19f7dda4d2",
)
),
clip_text_encoder=Path(
hf_hub_download(
repo_id="refiners/juggernaut.reborn.sd1_5.text_encoder",
filename="model.safetensors",
revision="744ad6a5c0437ec02ad826df9f6ede102bb27481",
)
),
lda=Path(
hf_hub_download(
repo_id="refiners/juggernaut.reborn.sd1_5.autoencoder",
filename="model.safetensors",
revision="3c1aae3fc3e03e4a2b7e0fa42b62ebb64f1a4c19",
)
),
controlnet_tile=Path(
hf_hub_download(
repo_id="refiners/controlnet.sd1_5.tile",
filename="model.safetensors",
revision="48ced6ff8bfa873a8976fa467c3629a240643387",
)
),
esrgan=Path(
hf_hub_download(
repo_id="philz1337x/upscaler",
filename="4x-UltraSharp.pth",
revision="011deacac8270114eb7d2eeff4fe6fa9a837be70",
)
),
negative_embedding=Path(
hf_hub_download(
repo_id="philz1337x/embeddings",
filename="JuggernautNegative-neg.pt",
revision="203caa7e9cc2bc225031a4021f6ab1ded283454a",
)
),
negative_embedding_key="string_to_param.*",
loras={
"more_details": Path(
hf_hub_download(
repo_id="philz1337x/loras",
filename="more_details.safetensors",
revision="a3802c0280c0d00c2ab18d37454a8744c44e474e",
)
),
"sdxl_render": Path(
hf_hub_download(
repo_id="philz1337x/loras",
filename="SDXLrender_v2.0.safetensors",
revision="a3802c0280c0d00c2ab18d37454a8744c44e474e",
)
),
},
)
# initialize the enhancer, on the cpu
DEVICE_CPU = torch.device("cpu")
DTYPE = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
enhancer = ESRGANUpscaler(checkpoints=CHECKPOINTS, device=DEVICE_CPU, dtype=DTYPE)
# "move" the enhancer to the gpu, this is handled by Zero GPU
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
enhancer.to(device=DEVICE, dtype=DTYPE)
@spaces.GPU
def process(
input_image: Image.Image,
prompt: str = "masterpiece, best quality, highres",
negative_prompt: str = "worst quality, low quality, normal quality",
seed: int = 42,
upscale_factor: int = 2,
controlnet_scale: float = 0.6,
controlnet_decay: float = 1.0,
condition_scale: int = 6,
tile_width: int = 112,
tile_height: int = 144,
denoise_strength: float = 0.35,
num_inference_steps: int = 18,
solver: str = "DDIM",
) -> tuple[Image.Image, Image.Image]:
manual_seed(seed)
solver_type: type[Solver] = getattr(solvers, solver)
enhanced_image = enhancer.upscale(
image=input_image,
prompt=prompt,
negative_prompt=negative_prompt,
upscale_factor=upscale_factor,
controlnet_scale=controlnet_scale,
controlnet_scale_decay=controlnet_decay,
condition_scale=condition_scale,
tile_size=(tile_height, tile_width),
denoise_strength=denoise_strength,
num_inference_steps=num_inference_steps,
loras_scale={"more_details": 0.5, "sdxl_render": 1.0},
solver_type=solver_type,
)
return (input_image, enhanced_image)
with gr.Blocks() as demo:
gr.HTML(TITLE)
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Input Image")
run_button = gr.ClearButton(components=None, value="Enhance Image")
with gr.Column():
output_slider = ImageSlider(label="Before / After")
run_button.add(output_slider)
with gr.Accordion("Advanced Options", open=False):
prompt = gr.Textbox(
label="Prompt",
placeholder="masterpiece, best quality, highres",
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
placeholder="worst quality, low quality, normal quality",
)
seed = gr.Slider(
minimum=0,
maximum=10_000,
value=42,
step=1,
label="Seed",
)
upscale_factor = gr.Slider(
minimum=1,
maximum=4,
value=2,
step=0.2,
label="Upscale Factor",
)
controlnet_scale = gr.Slider(
minimum=0,
maximum=1.5,
value=0.6,
step=0.1,
label="ControlNet Scale",
)
controlnet_decay = gr.Slider(
minimum=0.5,
maximum=1,
value=1.0,
step=0.025,
label="ControlNet Scale Decay",
)
condition_scale = gr.Slider(
minimum=2,
maximum=20,
value=6,
step=1,
label="Condition Scale",
)
tile_width = gr.Slider(
minimum=64,
maximum=200,
value=112,
step=1,
label="Latent Tile Width",
)
tile_height = gr.Slider(
minimum=64,
maximum=200,
value=144,
step=1,
label="Latent Tile Height",
)
denoise_strength = gr.Slider(
minimum=0,
maximum=1,
value=0.35,
step=0.1,
label="Denoise Strength",
)
num_inference_steps = gr.Slider(
minimum=1,
maximum=30,
value=18,
step=1,
label="Number of Inference Steps",
)
solver = gr.Radio(
choices=["DDIM", "DPMSolver"],
value="DDIM",
label="Solver",
)
run_button.click(
fn=process,
inputs=[
input_image,
prompt,
negative_prompt,
seed,
upscale_factor,
controlnet_scale,
controlnet_decay,
condition_scale,
tile_width,
tile_height,
denoise_strength,
num_inference_steps,
solver,
],
outputs=output_slider,
)
gr.Examples(
examples=[
"examples/kara-eads-L7EwHkq1B2s-unsplash.jpg",
"examples/clarity_bird.webp",
"examples/edgar-infocus-gJH8AqpiSEU-unsplash.jpg",
"examples/jeremy-wallace-_XjW3oN8UOE-unsplash.jpg",
"examples/karina-vorozheeva-rW-I87aPY5Y-unsplash.jpg",
"examples/karographix-photography-hIaOPjYCEj4-unsplash.jpg",
"examples/melissa-walker-horn-gtDYwUIr9Vg-unsplash.jpg",
"examples/ryoji-iwata-X53e51WfjlE-unsplash.jpg",
"examples/tadeusz-lakota-jggQZkITXng-unsplash.jpg",
],
inputs=[input_image],
outputs=output_slider,
fn=process,
cache_examples="lazy",
run_on_click=False,
)
demo.launch(share=False)