File size: 8,439 Bytes
e0e0fed 7938b64 e0e0fed 2a8bb88 e0e0fed da8336d e0e0fed da8336d e0e0fed 2a8bb88 e0e0fed da8336d e0e0fed da8336d e0e0fed 00f2e1a e0e0fed 00f2e1a 2a8bb88 00f2e1a 2a8bb88 00f2e1a 218692b 00f2e1a e0e0fed 218692b e0e0fed 00f2e1a e0e0fed da8336d e0e0fed da8336d e0e0fed da8336d 2a8bb88 e0e0fed da8336d 7938b64 e0e0fed 2a8bb88 e0e0fed 7938b64 da8336d aa7dd73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import io
from typing import Any
import gradio as gr
import httpx
from environs import Env
from gradio_image_annotation import image_annotator
from PIL import Image
env = Env()
env.read_env()
with env.prefixed("ERASER_"):
API_URL: str = str(env.str("API_URL", "https://spaces.finegrain.ai/eraser"))
API_KEY: str | None = env.str("API_KEY", None)
CA_BUNDLE: str | None = env.str("CA_BUNDLE", None)
auth = None if API_KEY is None else httpx.BasicAuth("hf", API_KEY)
def process_bbox(prompts: dict[str, Any], request: gr.Request | None) -> Image.Image:
assert isinstance(img := prompts["image"], Image.Image)
assert isinstance(boxes := prompts["boxes"], list)
assert len(boxes) == 1
assert isinstance(box := boxes[0], dict)
data = {"bbox": ",".join([str(box[k]) for k in ["xmin", "ymin", "xmax", "ymax"]])}
headers = {}
if request: # avoid DOS - can be None despite type hint!
client_ip = request.headers.get("x-forwarded-for") or request.client.host
headers = {"X-HF-Client-IP": client_ip}
with io.BytesIO() as f:
img.save(f, format="JPEG")
r = httpx.post(
API_URL,
data=data,
files={"file": f},
verify=CA_BUNDLE or True,
timeout=30.0,
auth=auth,
headers=headers,
)
r.raise_for_status()
return Image.open(io.BytesIO(r.content))
def on_change_bbox(prompts: dict[str, Any]):
return gr.update(interactive=len(prompts["boxes"]) > 0)
def process_prompt(
img: Image.Image,
prompt: str,
request: gr.Request | None,
) -> Image.Image:
data = {"prompt": prompt}
headers = {}
if request: # avoid DOS - can be None despite type hint!
client_ip = request.headers.get("x-forwarded-for") or request.client.host
headers = {"X-HF-Client-IP": client_ip}
with io.BytesIO() as f:
img.save(f, format="JPEG")
r = httpx.post(
API_URL,
data=data,
files={"file": f},
verify=CA_BUNDLE or True,
timeout=30.0,
auth=auth,
headers=headers,
)
r.raise_for_status()
return Image.open(io.BytesIO(r.content))
def on_change_prompt(img: Image.Image | None, prompt: str | None):
return gr.update(interactive=bool(img and prompt))
TITLE = """
<center>
<h1 style="font-size: 1.5rem; margin-bottom: 0.5rem;">
Object Eraser Powered By Refiners
</h1>
<div style="
display: flex;
align-items: center;
justify-content: center;
gap: 0.5rem;
margin-bottom: 0.5rem;
font-size: 1.25rem;
flex-wrap: wrap;
">
<a href="https://github.com/finegrain-ai/refiners" target="_blank">[Refiners]</a>
<a href="https://finegrain.ai/" target="_blank">[Finegrain]</a>
<a
href="https://huggingface.co/spaces/finegrain/finegrain-image-enhancer"
target="_blank"
>[Finegrain Image Enhancer]</a>
</div>
<p>
Erase any object from your image just by naming it — no manual work required!
Not only will the object disappear, but so will its effects on the scene, like shadows or reflections.
</p>
<p>
This space is powered by Refiners, our open source micro-framework for simple foundation model adaptation.
If you enjoyed it, please consider starring Refiners on GitHub!
</p>
<a href="https://github.com/finegrain-ai/refiners" target="_blank">
<img src="https://img.shields.io/github/stars/finegrain-ai/refiners?style=social" />
</a>
</center>
"""
with gr.Blocks() as demo:
gr.HTML(TITLE)
with gr.Tab("By prompt", id="tab_prompt"):
with gr.Row():
with gr.Column():
iimg = gr.Image(type="pil", label="Input")
prompt = gr.Textbox(label="What should we erase?")
with gr.Column():
oimg = gr.Image(show_label=False, label="Output")
with gr.Row():
btn = gr.Button("Erase Object", interactive=False)
for inp in [iimg, prompt]:
inp.change(
fn=on_change_prompt,
inputs=[iimg, prompt],
outputs=[btn],
)
btn.click(
fn=process_prompt,
inputs=[iimg, prompt],
outputs=[oimg],
api_name=False,
)
examples = [
[
"examples/white-towels-rattan-basket-white-table-with-bright-room-background.jpg",
"soap",
],
[
"examples/interior-decor-with-mirror-potted-plant.jpg",
"potted plant",
],
[
"examples/detail-ball-basketball-court-sunset.jpg",
"basketball",
],
[
"examples/still-life-device-table_23-2150994394.jpg",
"glass of water",
],
[
"examples/knife-fork-green-checkered-napkin_140725-63576.jpg",
"knife and fork",
],
[
"examples/city-night-with-architecture-vibrant-lights_23-2149836930.jpg",
"frontmost black car on right lane",
],
[
"examples/close-up-coffee-latte-wooden-table_23-2147893063.jpg",
"coffee cup on plate",
],
[
"examples/empty-chair-with-vase-plant_74190-2078.jpg",
"chair",
],
]
ex = gr.Examples(
examples=examples,
inputs=[iimg, prompt],
outputs=[oimg],
fn=process_prompt,
cache_examples=True,
)
with gr.Tab("By bounding box", id="tab_bb"):
with gr.Row():
with gr.Column():
annotator = image_annotator(
image_type="pil",
disable_edit_boxes=True,
show_download_button=False,
show_share_button=False,
single_box=True,
label="Input",
)
with gr.Column():
oimg = gr.Image(show_label=False, label="Output")
with gr.Row():
btn = gr.Button("Erase Object", interactive=False)
annotator.change(
fn=on_change_bbox,
inputs=[annotator],
outputs=[btn],
)
btn.click(
fn=process_bbox,
inputs=[annotator],
outputs=[oimg],
api_name=False,
)
examples = [
{
"image": "examples/white-towels-rattan-basket-white-table-with-bright-room-background.jpg",
"boxes": [{"xmin": 836, "ymin": 475, "xmax": 1125, "ymax": 1013}],
},
{
"image": "examples/interior-decor-with-mirror-potted-plant.jpg",
"boxes": [{"xmin": 47, "ymin": 907, "xmax": 397, "ymax": 1633}],
},
{
"image": "examples/detail-ball-basketball-court-sunset.jpg",
"boxes": [{"xmin": 673, "ymin": 954, "xmax": 911, "ymax": 1186}],
},
{
"image": "examples/still-life-device-table_23-2150994394.jpg",
"boxes": [{"xmin": 429, "ymin": 586, "xmax": 571, "ymax": 834}],
},
{
"image": "examples/knife-fork-green-checkered-napkin_140725-63576.jpg",
"boxes": [{"xmin": 972, "ymin": 226, "xmax": 1092, "ymax": 1023}],
},
{
"image": "examples/city-night-with-architecture-vibrant-lights_23-2149836930.jpg",
"boxes": [{"xmin": 215, "ymin": 637, "xmax": 411, "ymax": 855}],
},
{
"image": "examples/close-up-coffee-latte-wooden-table_23-2147893063.jpg",
"boxes": [{"xmin": 255, "ymin": 456, "xmax": 1080, "ymax": 1064}],
},
{
"image": "examples/empty-chair-with-vase-plant_74190-2078.jpg",
"boxes": [{"xmin": 35, "ymin": 320, "xmax": 383, "ymax": 983}],
},
]
ex = gr.Examples(
examples=examples,
inputs=[annotator],
outputs=[oimg],
fn=process_bbox,
cache_examples=True,
)
demo.queue(max_size=30, api_open=False)
demo.launch(show_api=False)
|