FireRedTTS / app.py
fireredteam's picture
Update app.py
7b98f12 verified
raw
history blame
2.14 kB
import gradio as gr
import numpy as np
import os
import requests
import spaces
from fireredtts.fireredtts import FireRedTTS
def download_file(url, filename):
response = requests.get(url)
if response.status_code == 200:
with open(filename, 'wb') as file:
file.write(response.content)
print(f"File downloaded successfully: {filename}")
else:
print(f"Failed to download file: HTTP {response.status_code}")
if not os.path.exists('pretrained_models/fireredtts_gpt.pt'):
print("Start to download checkpoints...")
download_file('https://huggingface.co/fireredteam/FireRedTTS/resolve/main/fireredtts_gpt.pt',
'pretrained_models/fireredtts_gpt.pt')
download_file('https://huggingface.co/fireredteam/FireRedTTS/resolve/main/fireredtts_speaker.bin',
'pretrained_models/fireredtts_speaker.bin')
download_file('https://huggingface.co/fireredteam/FireRedTTS/resolve/main/fireredtts_token2wav.pt',
'pretrained_models/fireredtts_token2wav.pt')
sampling_rate = 24000
tts = FireRedTTS(
config_path="configs/config_24k.json",
pretrained_path='pretrained_models',
)
@spaces.GPU
def tts_inference(text, prompt_wav='examples/prompt_1.wav', lang='zh'):
# Model inference
syn_audio = tts.synthesize(
prompt_wav=prompt_wav,
text=text,
lang=lang,
)[0].detach().cpu().numpy()
# Normalize volume
syn_audio = syn_audio / np.max(np.abs(syn_audio)) * 0.9
# Convert audio data type
syn_audio = (syn_audio * 32768).astype(np.int16)
return sampling_rate, syn_audio
iface = gr.Interface(
fn=tts_inference,
inputs=[
gr.Textbox(label="Input text here"),
gr.Audio(type="filepath", label="Upload reference audio"),
gr.Dropdown(["en", "zh"], label="Select language"),
],
outputs=gr.Audio(label="Generated audio"),
title="FireRedTTS: A Foundation Text-To-Speech Framework for Industry-Level Generative Speech Applications",
# description="Enter some text and listen to the generated speech."
)
if __name__ == "__main__":
iface.launch()