Spaces:
Running
on
Zero
Running
on
Zero
import math | |
from typing import Optional | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import pack, rearrange, repeat | |
from diffusers.models.activations import get_activation | |
from fireredtts.modules.flow.transformer import BasicTransformerBlock | |
class SinusoidalPosEmb(torch.nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.dim = dim | |
assert self.dim % 2 == 0, "SinusoidalPosEmb requires dim to be even" | |
def forward(self, x, scale=1000): | |
if x.ndim < 1: | |
x = x.unsqueeze(0) | |
device = x.device | |
half_dim = self.dim // 2 | |
emb = math.log(10000) / (half_dim - 1) | |
emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb) | |
emb = scale * x.unsqueeze(1) * emb.unsqueeze(0) | |
emb = torch.cat((emb.sin(), emb.cos()), dim=-1) | |
return emb | |
class Block1D(torch.nn.Module): | |
def __init__(self, dim, dim_out, groups=8): | |
super().__init__() | |
self.block = torch.nn.Sequential( | |
torch.nn.Conv1d(dim, dim_out, 3, padding=1), | |
torch.nn.GroupNorm(groups, dim_out), | |
nn.Mish(), | |
) | |
def forward(self, x, mask): | |
output = self.block(x * mask) | |
return output * mask | |
class ResnetBlock1D(torch.nn.Module): | |
def __init__(self, dim, dim_out, time_emb_dim, groups=8): | |
super().__init__() | |
self.mlp = torch.nn.Sequential(nn.Mish(), torch.nn.Linear(time_emb_dim, dim_out)) | |
self.block1 = Block1D(dim, dim_out, groups=groups) | |
self.block2 = Block1D(dim_out, dim_out, groups=groups) | |
self.res_conv = torch.nn.Conv1d(dim, dim_out, 1) | |
def forward(self, x, mask, time_emb): | |
h = self.block1(x, mask) | |
h += self.mlp(time_emb).unsqueeze(-1) | |
h = self.block2(h, mask) | |
output = h + self.res_conv(x * mask) | |
return output | |
class Downsample1D(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.conv = torch.nn.Conv1d(dim, dim, 3, 2, 1) | |
def forward(self, x): | |
return self.conv(x) | |
class TimestepEmbedding(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
time_embed_dim: int, | |
act_fn: str = "silu", | |
out_dim: int = None, | |
post_act_fn: Optional[str] = None, | |
cond_proj_dim=None, | |
): | |
super().__init__() | |
self.linear_1 = nn.Linear(in_channels, time_embed_dim) | |
if cond_proj_dim is not None: | |
self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False) | |
else: | |
self.cond_proj = None | |
self.act = get_activation(act_fn) | |
if out_dim is not None: | |
time_embed_dim_out = out_dim | |
else: | |
time_embed_dim_out = time_embed_dim | |
self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out) | |
if post_act_fn is None: | |
self.post_act = None | |
else: | |
self.post_act = get_activation(post_act_fn) | |
def forward(self, sample, condition=None): | |
if condition is not None: | |
sample = sample + self.cond_proj(condition) | |
sample = self.linear_1(sample) | |
if self.act is not None: | |
sample = self.act(sample) | |
sample = self.linear_2(sample) | |
if self.post_act is not None: | |
sample = self.post_act(sample) | |
return sample | |
class Upsample1D(nn.Module): | |
"""A 1D upsampling layer with an optional convolution. | |
Parameters: | |
channels (`int`): | |
number of channels in the inputs and outputs. | |
use_conv (`bool`, default `False`): | |
option to use a convolution. | |
use_conv_transpose (`bool`, default `False`): | |
option to use a convolution transpose. | |
out_channels (`int`, optional): | |
number of output channels. Defaults to `channels`. | |
""" | |
def __init__(self, channels, use_conv=False, use_conv_transpose=True, out_channels=None, name="conv"): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.use_conv_transpose = use_conv_transpose | |
self.name = name | |
self.conv = None | |
if use_conv_transpose: | |
self.conv = nn.ConvTranspose1d(channels, self.out_channels, 4, 2, 1) | |
elif use_conv: | |
self.conv = nn.Conv1d(self.channels, self.out_channels, 3, padding=1) | |
def forward(self, inputs): | |
assert inputs.shape[1] == self.channels | |
if self.use_conv_transpose: | |
return self.conv(inputs) | |
outputs = F.interpolate(inputs, scale_factor=2.0, mode="nearest") | |
if self.use_conv: | |
outputs = self.conv(outputs) | |
return outputs | |
class ConditionalDecoder(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
channels=(256, 256), | |
dropout=0.0, | |
attention_head_dim=64, | |
n_blocks=4, | |
num_mid_blocks=12, | |
num_heads=8, | |
act_fn="gelu", | |
): | |
""" | |
This decoder requires an input with the same shape of the target. So, if your text content | |
is shorter or longer than the outputs, please re-sampling it before feeding to the decoder. | |
""" | |
super().__init__() | |
channels = tuple(channels) | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.time_embeddings = SinusoidalPosEmb(in_channels) | |
time_embed_dim = channels[0] * 4 | |
self.time_mlp = TimestepEmbedding( | |
in_channels=in_channels, | |
time_embed_dim=time_embed_dim, | |
act_fn="silu", | |
) | |
self.down_blocks = nn.ModuleList([]) | |
self.mid_blocks = nn.ModuleList([]) | |
self.up_blocks = nn.ModuleList([]) | |
output_channel = in_channels | |
for i in range(len(channels)): # pylint: disable=consider-using-enumerate | |
input_channel = output_channel | |
output_channel = channels[i] | |
is_last = i == len(channels) - 1 | |
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) | |
transformer_blocks = nn.ModuleList( | |
[ | |
BasicTransformerBlock( | |
dim=output_channel, | |
num_attention_heads=num_heads, | |
attention_head_dim=attention_head_dim, | |
dropout=dropout, | |
activation_fn=act_fn, | |
) | |
for _ in range(n_blocks) | |
] | |
) | |
downsample = ( | |
Downsample1D(output_channel) if not is_last else nn.Conv1d(output_channel, output_channel, 3, padding=1) | |
) | |
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample])) | |
for i in range(num_mid_blocks): | |
input_channel = channels[-1] | |
out_channels = channels[-1] | |
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) | |
transformer_blocks = nn.ModuleList( | |
[ | |
BasicTransformerBlock( | |
dim=output_channel, | |
num_attention_heads=num_heads, | |
attention_head_dim=attention_head_dim, | |
dropout=dropout, | |
activation_fn=act_fn, | |
) | |
for _ in range(n_blocks) | |
] | |
) | |
self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks])) | |
channels = channels[::-1] + (channels[0],) | |
for i in range(len(channels) - 1): | |
input_channel = channels[i] * 2 | |
output_channel = channels[i + 1] | |
is_last = i == len(channels) - 2 | |
resnet = ResnetBlock1D( | |
dim=input_channel, | |
dim_out=output_channel, | |
time_emb_dim=time_embed_dim, | |
) | |
transformer_blocks = nn.ModuleList( | |
[ | |
BasicTransformerBlock( | |
dim=output_channel, | |
num_attention_heads=num_heads, | |
attention_head_dim=attention_head_dim, | |
dropout=dropout, | |
activation_fn=act_fn, | |
) | |
for _ in range(n_blocks) | |
] | |
) | |
upsample = ( | |
Upsample1D(output_channel, use_conv_transpose=True) | |
if not is_last | |
else nn.Conv1d(output_channel, output_channel, 3, padding=1) | |
) | |
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample])) | |
self.final_block = Block1D(channels[-1], channels[-1]) | |
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1) | |
self.initialize_weights() | |
def initialize_weights(self): | |
for m in self.modules(): | |
if isinstance(m, nn.Conv1d): | |
nn.init.kaiming_normal_(m.weight, nonlinearity="relu") | |
if m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.GroupNorm): | |
nn.init.constant_(m.weight, 1) | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.Linear): | |
nn.init.kaiming_normal_(m.weight, nonlinearity="relu") | |
if m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
def forward(self, x, mask, mu, t): | |
"""Forward pass of the UNet1DConditional model. | |
Args: | |
x (torch.Tensor): shape (batch_size, in_channels, time) | |
mask (_type_): shape (batch_size, 1, time) | |
t (_type_): shape (batch_size) | |
spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None. | |
cond (_type_, optional): placeholder for future use. Defaults to None. | |
Raises: | |
ValueError: _description_ | |
ValueError: _description_ | |
Returns: | |
_type_: _description_ | |
""" | |
t = self.time_embeddings(t) | |
t = self.time_mlp(t) | |
x = pack([x, mu], "b * t")[0] | |
hiddens = [] | |
masks = [mask] | |
for resnet, transformer_blocks, downsample in self.down_blocks: | |
mask_down = masks[-1] | |
x = resnet(x, mask_down, t) | |
x = rearrange(x, "b c t -> b t c").contiguous() | |
attn_mask = torch.matmul(mask_down.transpose(1, 2).contiguous(), mask_down) | |
for transformer_block in transformer_blocks: | |
x = transformer_block( | |
hidden_states=x, | |
attention_mask=attn_mask, | |
timestep=t, | |
) | |
x = rearrange(x, "b t c -> b c t").contiguous() | |
hiddens.append(x) # Save hidden states for skip connections | |
x = downsample(x * mask_down) | |
masks.append(mask_down[:, :, ::2]) | |
masks = masks[:-1] | |
mask_mid = masks[-1] | |
for resnet, transformer_blocks in self.mid_blocks: | |
x = resnet(x, mask_mid, t) | |
x = rearrange(x, "b c t -> b t c").contiguous() | |
attn_mask = torch.matmul(mask_mid.transpose(1, 2).contiguous(), mask_mid) | |
for transformer_block in transformer_blocks: | |
x = transformer_block( | |
hidden_states=x, | |
attention_mask=attn_mask, | |
timestep=t, | |
) | |
x = rearrange(x, "b t c -> b c t").contiguous() | |
for resnet, transformer_blocks, upsample in self.up_blocks: | |
mask_up = masks.pop() | |
skip = hiddens.pop() | |
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0] | |
x = resnet(x, mask_up, t) | |
x = rearrange(x, "b c t -> b t c").contiguous() | |
attn_mask = torch.matmul(mask_up.transpose(1, 2).contiguous(), mask_up) | |
for transformer_block in transformer_blocks: | |
x = transformer_block( | |
hidden_states=x, | |
attention_mask=attn_mask, | |
timestep=t, | |
) | |
x = rearrange(x, "b t c -> b c t").contiguous() | |
x = upsample(x * mask_up) | |
x = self.final_block(x, mask_up) | |
output = self.final_proj(x * mask_up) | |
return output * mask | |
class ConditionalCFM(nn.Module): | |
def __init__(self, | |
estimator: nn.Module, | |
t_scheduler: str = "cosine", | |
inference_cfg_rate: float = 0.7, | |
): | |
super().__init__() | |
self.estimator = estimator | |
self.t_scheduler = t_scheduler | |
self.inference_cfg_rate = inference_cfg_rate | |
def solve_euler(self, x, t_span, mu, mask): | |
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0] | |
# I am storing this because I can later plot it by putting a debugger here and saving it to a file | |
# Or in future might add like a return_all_steps flag | |
sol = [] | |
for step in range(1, len(t_span)): | |
dphi_dt = self.estimator(x, mask, mu, t) | |
# Classifier-Free Guidance inference introduced in VoiceBox | |
if self.inference_cfg_rate > 0: | |
cfg_dphi_dt = self.estimator(x, mask, torch.zeros_like(mu), t) | |
dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt - | |
self.inference_cfg_rate * cfg_dphi_dt) | |
x = x + dt * dphi_dt | |
t = t + dt | |
sol.append(x) | |
if step < len(t_span) - 1: | |
dt = t_span[step + 1] - t | |
return sol[-1] | |
def inference(self, mu, mask, n_timesteps, temperature: float=1.0): | |
z = torch.randn_like(mu) * temperature | |
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device) | |
if self.t_scheduler == 'cosine': | |
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi) | |
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask) | |