FireRedTTS / fireredtts /modules /flow /mel_spectrogram.py
hhguo's picture
update
37ced70
raw
history blame
3.89 kB
from functools import partial
import torch
import numpy as np
import librosa
from librosa.filters import mel as librosa_mel_fn
from torchaudio.functional import resample as ta_resample_fn
MAX_WAV_VALUE = 32767.0 # NOTE: 32768.0 -1 to prevent int16 overflow (results in popping sound in corner cases)
def dynamic_range_compression(x, C=1, clip_val=1e-5):
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
def dynamic_range_decompression(x, C=1):
return np.exp(x) / C
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
return torch.log(torch.clamp(x, min=clip_val) * C)
def dynamic_range_decompression_torch(x, C=1):
return torch.exp(x) / C
def spectral_normalize_torch(magnitudes):
output = dynamic_range_compression_torch(magnitudes)
return output
def spectral_de_normalize_torch(magnitudes):
output = dynamic_range_decompression_torch(magnitudes)
return output
mel_basis = {}
hann_window = {}
def mel_spectrogram(
y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False
):
global mel_basis, hann_window
if fmax not in mel_basis:
mel = librosa_mel_fn(
sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax
)
str_key_mel_basis = str(fmax) + "_" + str(y.device)
mel_basis[str_key_mel_basis] = torch.from_numpy(mel).float().to(y.device)
hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device)
y = torch.nn.functional.pad(
y.unsqueeze(1),
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
mode="reflect",
)
y = y.squeeze(1)
# complex tensor as default, then use view_as_real for future pytorch compatibility
spec = torch.stft(
y,
n_fft,
hop_length=hop_size,
win_length=win_size,
window=hann_window[str(y.device)],
center=center,
pad_mode="reflect",
normalized=False,
onesided=True,
return_complex=True,
)
spec = torch.view_as_real(spec)
spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9))
spec = torch.matmul(mel_basis[str_key_mel_basis], spec)
spec = spectral_normalize_torch(spec)
return spec
kaiser_best_resampling_fn = partial(
ta_resample_fn,
resampling_method="sinc_interp_kaiser", # DO NOT CHANGE!
rolloff=0.917347, # DO NOT CHANGE!
beta=12.9846, # DO NOT CHANGE!
lowpass_filter_width=50, # DO NOT CHANGE!
)
class MelSpectrogramExtractor(object):
def __init__(
self,
n_fft=1024,
win_size=1024,
num_mels=100,
hop_size=160,
sampling_rate=16000,
fmin=0,
fmax=None,
):
self.n_fft = n_fft
self.win_size = win_size
self.num_mels = num_mels
self.hop_size = hop_size
self.sampling_rate = sampling_rate
self.fmin = fmin
self.fmax = fmax
def __call__(self, wav_path) -> np.ndarray:
wav_data, wav_sr = librosa.load(wav_path, sr=None, mono=True)
wav_data = torch.from_numpy(wav_data.copy()).unsqueeze(0)
# for 16k wavs, up-downsample to reduce artifects
if wav_sr == self.sampling_rate:
wav_data = kaiser_best_resampling_fn(wav_data, orig_freq=wav_sr, new_freq=24000)
wav_data = kaiser_best_resampling_fn(wav_data, orig_freq=24000, new_freq=self.sampling_rate)
else:
wav_data = kaiser_best_resampling_fn(wav_data, orig_freq=wav_sr, new_freq=self.sampling_rate)
# (1, num_mels, t)
mel = mel_spectrogram(
wav_data,
self.n_fft,
self.num_mels,
self.sampling_rate,
self.hop_size,
self.win_size,
self.fmin,
self.fmax,
)
mel = mel.squeeze(0).transpose(1, 0)
return mel # (t, num_mels)