Spaces:
Running
on
Zero
Running
on
Zero
from functools import partial | |
import torch | |
import numpy as np | |
import librosa | |
from librosa.filters import mel as librosa_mel_fn | |
from torchaudio.functional import resample as ta_resample_fn | |
MAX_WAV_VALUE = 32767.0 # NOTE: 32768.0 -1 to prevent int16 overflow (results in popping sound in corner cases) | |
def dynamic_range_compression(x, C=1, clip_val=1e-5): | |
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C) | |
def dynamic_range_decompression(x, C=1): | |
return np.exp(x) / C | |
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): | |
return torch.log(torch.clamp(x, min=clip_val) * C) | |
def dynamic_range_decompression_torch(x, C=1): | |
return torch.exp(x) / C | |
def spectral_normalize_torch(magnitudes): | |
output = dynamic_range_compression_torch(magnitudes) | |
return output | |
def spectral_de_normalize_torch(magnitudes): | |
output = dynamic_range_decompression_torch(magnitudes) | |
return output | |
mel_basis = {} | |
hann_window = {} | |
def mel_spectrogram( | |
y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False | |
): | |
global mel_basis, hann_window | |
if fmax not in mel_basis: | |
mel = librosa_mel_fn( | |
sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax | |
) | |
str_key_mel_basis = str(fmax) + "_" + str(y.device) | |
mel_basis[str_key_mel_basis] = torch.from_numpy(mel).float().to(y.device) | |
hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device) | |
y = torch.nn.functional.pad( | |
y.unsqueeze(1), | |
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), | |
mode="reflect", | |
) | |
y = y.squeeze(1) | |
# complex tensor as default, then use view_as_real for future pytorch compatibility | |
spec = torch.stft( | |
y, | |
n_fft, | |
hop_length=hop_size, | |
win_length=win_size, | |
window=hann_window[str(y.device)], | |
center=center, | |
pad_mode="reflect", | |
normalized=False, | |
onesided=True, | |
return_complex=True, | |
) | |
spec = torch.view_as_real(spec) | |
spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9)) | |
spec = torch.matmul(mel_basis[str_key_mel_basis], spec) | |
spec = spectral_normalize_torch(spec) | |
return spec | |
kaiser_best_resampling_fn = partial( | |
ta_resample_fn, | |
resampling_method="sinc_interp_kaiser", # DO NOT CHANGE! | |
rolloff=0.917347, # DO NOT CHANGE! | |
beta=12.9846, # DO NOT CHANGE! | |
lowpass_filter_width=50, # DO NOT CHANGE! | |
) | |
class MelSpectrogramExtractor(object): | |
def __init__( | |
self, | |
n_fft=1024, | |
win_size=1024, | |
num_mels=100, | |
hop_size=160, | |
sampling_rate=16000, | |
fmin=0, | |
fmax=None, | |
): | |
self.n_fft = n_fft | |
self.win_size = win_size | |
self.num_mels = num_mels | |
self.hop_size = hop_size | |
self.sampling_rate = sampling_rate | |
self.fmin = fmin | |
self.fmax = fmax | |
def __call__(self, wav_path) -> np.ndarray: | |
wav_data, wav_sr = librosa.load(wav_path, sr=None, mono=True) | |
wav_data = torch.from_numpy(wav_data.copy()).unsqueeze(0) | |
# for 16k wavs, up-downsample to reduce artifects | |
if wav_sr == self.sampling_rate: | |
wav_data = kaiser_best_resampling_fn(wav_data, orig_freq=wav_sr, new_freq=24000) | |
wav_data = kaiser_best_resampling_fn(wav_data, orig_freq=24000, new_freq=self.sampling_rate) | |
else: | |
wav_data = kaiser_best_resampling_fn(wav_data, orig_freq=wav_sr, new_freq=self.sampling_rate) | |
# (1, num_mels, t) | |
mel = mel_spectrogram( | |
wav_data, | |
self.n_fft, | |
self.num_mels, | |
self.sampling_rate, | |
self.hop_size, | |
self.win_size, | |
self.fmin, | |
self.fmax, | |
) | |
mel = mel.squeeze(0).transpose(1, 0) | |
return mel # (t, num_mels) | |