import typing as tp import torch import torch.nn as nn from torch.nn import Conv1d, ConvTranspose1d from torch.nn.utils import weight_norm, remove_weight_norm from fireredtts.modules.bigvgan.alias_free_torch import ( Activation1d as TorchActivation1d, ) from fireredtts.modules.bigvgan.activations import Snake, SnakeBeta def init_weights(m, mean=0.0, std=0.01): classname = m.__class__.__name__ if classname.find("Conv") != -1: m.weight.data.normal_(mean, std) def get_padding(kernel_size, dilation=1): return int((kernel_size * dilation - dilation) / 2) class AMPBlock1(torch.nn.Module): def __init__( self, channels, kernel_size=3, dilation=(1, 3, 5), activation=None, snake_logscale=True, use_cuda_kernel=False, ): super(AMPBlock1, self).__init__() self.convs1 = nn.ModuleList( [ weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]), ) ), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]), ) ), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[2], padding=get_padding(kernel_size, dilation[2]), ) ), ] ) self.convs1.apply(init_weights) self.convs2 = nn.ModuleList( [ weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1), ) ), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1), ) ), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1), ) ), ] ) self.convs2.apply(init_weights) self.num_layers = len(self.convs1) + len( self.convs2 ) # total number of conv layers # select which Activation1d, lazy-load cuda version to ensure backward compatibility if use_cuda_kernel: from modules.bigvgan.alias_free_cuda.activation1d import ( Activation1d as CudaActivation1d, ) Activation1d = CudaActivation1d else: Activation1d = TorchActivation1d if ( activation == "snake" ): # periodic nonlinearity with snake function and anti-aliasing self.activations = nn.ModuleList( [ Activation1d( activation=Snake(channels, alpha_logscale=snake_logscale) ) for _ in range(self.num_layers) ] ) elif ( activation == "snakebeta" ): # periodic nonlinearity with snakebeta function and anti-aliasing self.activations = nn.ModuleList( [ Activation1d( activation=SnakeBeta(channels, alpha_logscale=snake_logscale) ) for _ in range(self.num_layers) ] ) else: raise NotImplementedError( "activation incorrectly specified. check the config file and look for 'activation'." ) def forward(self, x): acts1, acts2 = self.activations[::2], self.activations[1::2] for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2): xt = a1(x) xt = c1(xt) xt = a2(xt) xt = c2(xt) x = xt + x return x def remove_weight_norm(self): for l in self.convs1: remove_weight_norm(l) for l in self.convs2: remove_weight_norm(l) class AMPBlock2(torch.nn.Module): def __init__( self, channels, kernel_size=3, dilation=(1, 3), activation=None, snake_logscale=True, use_cuda_kernel=False, ): super(AMPBlock2, self).__init__() self.convs = nn.ModuleList( [ weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]), ) ), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]), ) ), ] ) self.convs.apply(init_weights) self.num_layers = len(self.convs) # total number of conv layers # select which Activation1d, lazy-load cuda version to ensure backward compatibility if use_cuda_kernel: from modules.bigvgan.alias_free_cuda.activation1d import ( Activation1d as CudaActivation1d, ) Activation1d = CudaActivation1d else: Activation1d = TorchActivation1d if ( activation == "snake" ): # periodic nonlinearity with snake function and anti-aliasing self.activations = nn.ModuleList( [ Activation1d( activation=Snake(channels, alpha_logscale=snake_logscale) ) for _ in range(self.num_layers) ] ) elif ( activation == "snakebeta" ): # periodic nonlinearity with snakebeta function and anti-aliasing self.activations = nn.ModuleList( [ Activation1d( activation=SnakeBeta(channels, alpha_logscale=snake_logscale) ) for _ in range(self.num_layers) ] ) else: raise NotImplementedError( "activation incorrectly specified. check the config file and look for 'activation'." ) def forward(self, x): for c, a in zip(self.convs, self.activations): xt = a(x) xt = c(xt) x = xt + x return x def remove_weight_norm(self): for l in self.convs: remove_weight_norm(l) class BigVGAN(torch.nn.Module): # this is our main BigVGAN model. Applies anti-aliased periodic activation for resblocks. def __init__( self, num_mels: int, upsample_initial_channel: int, resblock_kernel_sizes: tp.List[int], resblock_dilation_sizes: tp.List[tp.List[int]], upsample_rates: tp.List[int], upsample_kernel_sizes: tp.List[int], resblock_type: str = "1", snake_logscale: bool = True, activation: str = "snakebeta", use_tanh_at_final: bool = False, use_bias_at_final: bool = False, use_cuda_kernel: bool = False, ): super(BigVGAN, self).__init__() self.num_kernels = len(resblock_kernel_sizes) self.num_upsamples = len(upsample_rates) # pre conv self.conv_pre = weight_norm( Conv1d(num_mels, upsample_initial_channel, 7, 1, padding=3) ) # define which AMPBlock to use. BigVGAN uses AMPBlock1 as default resblock = AMPBlock1 if resblock_type == "1" else AMPBlock2 # transposed conv-based upsamplers. does not apply anti-aliasing self.ups = nn.ModuleList() for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): self.ups.append( nn.ModuleList( [ weight_norm( ConvTranspose1d( upsample_initial_channel // (2**i), upsample_initial_channel // (2 ** (i + 1)), k, u, padding=(k - u) // 2, ) ) ] ) ) # residual blocks using anti-aliased multi-periodicity composition modules (AMP) self.resblocks = nn.ModuleList() for i in range(len(self.ups)): ch = upsample_initial_channel // (2 ** (i + 1)) for j, (k, d) in enumerate( zip(resblock_kernel_sizes, resblock_dilation_sizes) ): self.resblocks.append( resblock( ch, k, d, activation=activation, snake_logscale=snake_logscale, use_cuda_kernel=use_cuda_kernel, ) ) # select which Activation1d, lazy-load cuda version to ensure backward compatibility if use_cuda_kernel: from modules.bigvgan.alias_free_cuda.activation1d import ( Activation1d as CudaActivation1d, ) Activation1d = CudaActivation1d else: Activation1d = TorchActivation1d # post conv if ( activation == "snake" ): # periodic nonlinearity with snake function and anti-aliasing activation_post = Snake(ch, alpha_logscale=snake_logscale) self.activation_post = Activation1d(activation=activation_post) elif ( activation == "snakebeta" ): # periodic nonlinearity with snakebeta function and anti-aliasing activation_post = SnakeBeta(ch, alpha_logscale=snake_logscale) self.activation_post = Activation1d(activation=activation_post) else: raise NotImplementedError( "activation incorrectly specified. check the config file and look for 'activation'." ) # whether to use bias for the final conv_post. Defaults to True for backward compatibility self.use_bias_at_final = use_bias_at_final self.conv_post = weight_norm( Conv1d(ch, 1, 7, 1, padding=3, bias=self.use_bias_at_final) ) # weight initialization for i in range(len(self.ups)): self.ups[i].apply(init_weights) self.conv_post.apply(init_weights) # final tanh activation. Defaults to True for backward compatibility self.use_tanh_at_final = use_tanh_at_final def forward(self, x): # pre conv x = self.conv_pre(x) for i in range(self.num_upsamples): # upsampling for i_up in range(len(self.ups[i])): x = self.ups[i][i_up](x) # AMP blocks xs = None for j in range(self.num_kernels): if xs is None: xs = self.resblocks[i * self.num_kernels + j](x) else: xs += self.resblocks[i * self.num_kernels + j](x) x = xs / self.num_kernels # post conv x = self.activation_post(x) x = self.conv_post(x) # final tanh activation if self.use_tanh_at_final: x = torch.tanh(x) else: x = torch.clamp(x, min=-1.0, max=1.0) # bound the output to [-1, 1] return x def remove_weight_norm(self): print("Removing weight norm...") for l in self.ups: for l_i in l: remove_weight_norm(l_i) for l in self.resblocks: l.remove_weight_norm() remove_weight_norm(self.conv_pre) remove_weight_norm(self.conv_post)