import gradio as gr import numpy as np import os import requests import spaces from fireredtts.fireredtts import FireRedTTS def download_file(url, filename): response = requests.get(url) if response.status_code == 200: with open(filename, 'wb') as file: file.write(response.content) print(f"File downloaded successfully: {filename}") else: print(f"Failed to download file: HTTP {response.status_code}") if not os.path.exists('pretrained_models/fireredtts_gpt.pt'): print("Start to download checkpoints...") download_file('https://huggingface.co/fireredteam/FireRedTTS/resolve/main/fireredtts_gpt.pt', 'pretrained_models/fireredtts_gpt.pt') download_file('https://huggingface.co/fireredteam/FireRedTTS/resolve/main/fireredtts_speaker.bin', 'pretrained_models/fireredtts_speaker.bin') download_file('https://huggingface.co/fireredteam/FireRedTTS/resolve/main/fireredtts_token2wav.pt', 'pretrained_models/fireredtts_token2wav.pt') sampling_rate = 24000 tts = FireRedTTS( config_path="configs/config_24k.json", pretrained_path='pretrained_models', ) @spaces.GPU def tts_inference(text, prompt_wav='examples/prompt_1.wav', lang='zh'): # Model inference syn_audio = tts.synthesize( prompt_wav=prompt_wav, text=text, lang=lang, )[0].detach().cpu().numpy() # Normalize volume syn_audio = syn_audio / np.max(np.abs(syn_audio)) * 0.9 # Convert audio data type syn_audio = (syn_audio * 32768).astype(np.int16) return sampling_rate, syn_audio iface = gr.Interface( fn=tts_inference, inputs=[ gr.Textbox(label="Input text here"), gr.Audio(type="filepath", label="Upload reference audio"), gr.Dropdown(["en", "zh"], label="Select language"), ], outputs=gr.Audio(label="Generated audio"), title="FireRedTTS: A Foundation Text-To-Speech Framework for Industry-Level Generative Speech Applications", # description="Enter some text and listen to the generated speech." ) if __name__ == "__main__": iface.launch()