import typing as tp import math import torch import torch.nn as nn import torch.nn.functional as F from fireredtts.modules.flow.utils import make_pad_mask class MultiHeadedAttention(nn.Module): """Multi-Head Attention layer. Args: n_head (int): The number of heads. n_feat (int): The number of features. dropout_rate (float): Dropout rate. """ def __init__(self, n_head: int, n_feat: int, dropout_rate: float, key_bias: bool = True): """Construct an MultiHeadedAttention object.""" super().__init__() assert n_feat % n_head == 0 # We assume d_v always equals d_k self.d_k = n_feat // n_head self.h = n_head self.linear_q = nn.Linear(n_feat, n_feat) self.linear_k = nn.Linear(n_feat, n_feat, bias=key_bias) self.linear_v = nn.Linear(n_feat, n_feat) self.linear_out = nn.Linear(n_feat, n_feat) self.dropout = nn.Dropout(p=dropout_rate) def forward_qkv( self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor ) -> tp.Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """Transform query, key and value. Args: query (torch.Tensor): Query tensor (#batch, time1, size). key (torch.Tensor): Key tensor (#batch, time2, size). value (torch.Tensor): Value tensor (#batch, time2, size). Returns: torch.Tensor: Transformed query tensor, size (#batch, n_head, time1, d_k). torch.Tensor: Transformed key tensor, size (#batch, n_head, time2, d_k). torch.Tensor: Transformed value tensor, size (#batch, n_head, time2, d_k). """ n_batch = query.size(0) q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k) k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k) v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k) q = q.transpose(1, 2) # (batch, head, time1, d_k) k = k.transpose(1, 2) # (batch, head, time2, d_k) v = v.transpose(1, 2) # (batch, head, time2, d_k) return q, k, v def forward_attention( self, value: torch.Tensor, scores: torch.Tensor, mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool) ) -> torch.Tensor: """Compute attention context vector. Args: value (torch.Tensor): Transformed value, size (#batch, n_head, time2, d_k). scores (torch.Tensor): Attention score, size (#batch, n_head, time1, time2). mask (torch.Tensor): Mask, size (#batch, 1, time2) or (#batch, time1, time2), (0, 0, 0) means fake mask. Returns: torch.Tensor: Transformed value (#batch, time1, d_model) weighted by the attention score (#batch, time1, time2). """ n_batch = value.size(0) # NOTE(xcsong): When will `if mask.size(2) > 0` be True? # 1. onnx(16/4) [WHY? Because we feed real cache & real mask for the # 1st chunk to ease the onnx export.] # 2. pytorch training if mask.size(2) > 0: # time2 > 0 mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2) # For last chunk, time2 might be larger than scores.size(-1) mask = mask[:, :, :, :scores.size(-1)] # (batch, 1, *, time2) scores = scores.masked_fill(mask, -float('inf')) attn = torch.softmax(scores, dim=-1).masked_fill( mask, 0.0) # (batch, head, time1, time2) # NOTE(xcsong): When will `if mask.size(2) > 0` be False? # 1. onnx(16/-1, -1/-1, 16/0) # 2. jit (16/-1, -1/-1, 16/0, 16/4) else: attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2) p_attn = self.dropout(attn) x = torch.matmul(p_attn, value) # (batch, head, time1, d_k) x = (x.transpose(1, 2).contiguous().view(n_batch, -1, self.h * self.d_k) ) # (batch, time1, d_model) return self.linear_out(x) # (batch, time1, d_model) def forward( self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), pos_emb: torch.Tensor = torch.empty(0), cache: torch.Tensor = torch.zeros((0, 0, 0, 0)) ) -> tp.Tuple[torch.Tensor, torch.Tensor]: """Compute scaled dot product attention. Args: query (torch.Tensor): Query tensor (#batch, time1, size). key (torch.Tensor): Key tensor (#batch, time2, size). value (torch.Tensor): Value tensor (#batch, time2, size). mask (torch.Tensor): Mask tensor (#batch, 1, time2) or (#batch, time1, time2). 1.When applying cross attention between decoder and encoder, the batch padding mask for input is in (#batch, 1, T) shape. 2.When applying self attention of encoder, the mask is in (#batch, T, T) shape. cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2), where `cache_t == chunk_size * num_decoding_left_chunks` and `head * d_k == size` Returns: torch.Tensor: Output tensor (#batch, time1, d_model). torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2) where `cache_t == chunk_size * num_decoding_left_chunks` and `head * d_k == size` """ q, k, v = self.forward_qkv(query, key, value) # NOTE(xcsong): # when export onnx model, for 1st chunk, we feed # cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode) # or cache(1, head, real_cache_t, d_k * 2) (16/4 mode). # In all modes, `if cache.size(0) > 0` will alwayse be `True` # and we will always do splitting and # concatnation(this will simplify onnx export). Note that # it's OK to concat & split zero-shaped tensors(see code below). # when export jit model, for 1st chunk, we always feed # cache(0, 0, 0, 0) since jit supports dynamic if-branch. # >>> a = torch.ones((1, 2, 0, 4)) # >>> b = torch.ones((1, 2, 3, 4)) # >>> c = torch.cat((a, b), dim=2) # >>> torch.equal(b, c) # True # >>> d = torch.split(a, 2, dim=-1) # >>> torch.equal(d[0], d[1]) # True if cache.size(0) > 0: key_cache, value_cache = torch.split(cache, cache.size(-1) // 2, dim=-1) k = torch.cat([key_cache, k], dim=2) v = torch.cat([value_cache, v], dim=2) # NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's # non-trivial to calculate `next_cache_start` here. new_cache = torch.cat((k, v), dim=-1) scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k) return self.forward_attention(v, scores, mask), new_cache class RelPositionMultiHeadedAttention(MultiHeadedAttention): """Multi-Head Attention layer with relative position encoding. Paper: https://arxiv.org/abs/1901.02860 Args: n_head (int): The number of heads. n_feat (int): The number of features. dropout_rate (float): Dropout rate. """ def __init__(self, n_head: int, n_feat: int, dropout_rate: float, key_bias: bool = True): """Construct an RelPositionMultiHeadedAttention object.""" super().__init__(n_head, n_feat, dropout_rate, key_bias) # linear transformation for positional encoding self.linear_pos = nn.Linear(n_feat, n_feat, bias=False) # these two learnable bias are used in matrix c and matrix d # as described in https://arxiv.org/abs/1901.02860 Section 3.3 self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k)) self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k)) torch.nn.init.xavier_uniform_(self.pos_bias_u) torch.nn.init.xavier_uniform_(self.pos_bias_v) def rel_shift(self, x): """Compute relative positional encoding. Args: x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1). time1 means the length of query vector. Returns: torch.Tensor: Output tensor. """ zero_pad = torch.zeros((*x.size()[:3], 1), device=x.device, dtype=x.dtype) x_padded = torch.cat([zero_pad, x], dim=-1) x_padded = x_padded.view(*x.size()[:2], x.size(3) + 1, x.size(2)) x = x_padded[:, :, 1:].view_as(x)[ :, :, :, : x.size(-1) // 2 + 1 ] # only keep the positions from 0 to time2 return x def forward( self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), pos_emb: torch.Tensor = torch.empty(0), cache: torch.Tensor = torch.zeros((0, 0, 0, 0)) ) -> tp.Tuple[torch.Tensor, torch.Tensor]: """Compute 'Scaled Dot Product Attention' with rel. positional encoding. Args: query (torch.Tensor): Query tensor (#batch, time1, size). key (torch.Tensor): Key tensor (#batch, time2, size). value (torch.Tensor): Value tensor (#batch, time2, size). mask (torch.Tensor): Mask tensor (#batch, 1, time2) or (#batch, time1, time2), (0, 0, 0) means fake mask. pos_emb (torch.Tensor): Positional embedding tensor (#batch, time2, size). cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2), where `cache_t == chunk_size * num_decoding_left_chunks` and `head * d_k == size` Returns: torch.Tensor: Output tensor (#batch, time1, d_model). torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2) where `cache_t == chunk_size * num_decoding_left_chunks` and `head * d_k == size` """ q, k, v = self.forward_qkv(query, key, value) q = q.transpose(1, 2) # (batch, time1, head, d_k) # NOTE(xcsong): # when export onnx model, for 1st chunk, we feed # cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode) # or cache(1, head, real_cache_t, d_k * 2) (16/4 mode). # In all modes, `if cache.size(0) > 0` will alwayse be `True` # and we will always do splitting and # concatnation(this will simplify onnx export). Note that # it's OK to concat & split zero-shaped tensors(see code below). # when export jit model, for 1st chunk, we always feed # cache(0, 0, 0, 0) since jit supports dynamic if-branch. # >>> a = torch.ones((1, 2, 0, 4)) # >>> b = torch.ones((1, 2, 3, 4)) # >>> c = torch.cat((a, b), dim=2) # >>> torch.equal(b, c) # True # >>> d = torch.split(a, 2, dim=-1) # >>> torch.equal(d[0], d[1]) # True if cache.size(0) > 0: key_cache, value_cache = torch.split(cache, cache.size(-1) // 2, dim=-1) k = torch.cat([key_cache, k], dim=2) v = torch.cat([value_cache, v], dim=2) # NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's # non-trivial to calculate `next_cache_start` here. new_cache = torch.cat((k, v), dim=-1) n_batch_pos = pos_emb.size(0) p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k) p = p.transpose(1, 2) # (batch, head, time1, d_k) # (batch, head, time1, d_k) q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2) # (batch, head, time1, d_k) q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2) # compute attention score # first compute matrix a and matrix c # as described in https://arxiv.org/abs/1901.02860 Section 3.3 # (batch, head, time1, time2) matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1)) # compute matrix b and matrix d # (batch, head, time1, time2) matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1)) # NOTE(Xiang Lyu): Keep rel_shift since espnet rel_pos_emb is used if matrix_ac.shape != matrix_bd.shape: matrix_bd = self.rel_shift(matrix_bd) scores = (matrix_ac + matrix_bd) / math.sqrt( self.d_k) # (batch, head, time1, time2) return self.forward_attention(v, scores, mask), new_cache class PositionwiseFeedForward(torch.nn.Module): """Positionwise feed forward layer. FeedForward are appied on each position of the sequence. The output dim is same with the input dim. Args: idim (int): Input dimenstion. hidden_units (int): The number of hidden units. dropout_rate (float): Dropout rate. activation (torch.nn.Module): Activation function """ def __init__( self, idim: int, hidden_units: int, dropout_rate: float, activation: torch.nn.Module = torch.nn.ReLU(), ): """Construct a PositionwiseFeedForward object.""" super(PositionwiseFeedForward, self).__init__() self.w_1 = torch.nn.Linear(idim, hidden_units) self.activation = activation self.dropout = torch.nn.Dropout(dropout_rate) self.w_2 = torch.nn.Linear(hidden_units, idim) def forward(self, xs: torch.Tensor) -> torch.Tensor: """Forward function. Args: xs: input tensor (B, L, D) Returns: output tensor, (B, L, D) """ return self.w_2(self.dropout(self.activation(self.w_1(xs)))) class ConformerDecoderLayer(nn.Module): """Encoder layer module. Args: size (int): Input dimension. self_attn (torch.nn.Module): Self-attention module instance. `MultiHeadedAttention` or `RelPositionMultiHeadedAttention` instance can be used as the argument. src_attn (torch.nn.Module): Cross-attention module instance. `MultiHeadedAttention` or `RelPositionMultiHeadedAttention` instance can be used as the argument. feed_forward (torch.nn.Module): Feed-forward module instance. `PositionwiseFeedForward` instance can be used as the argument. feed_forward_macaron (torch.nn.Module): Additional feed-forward module instance. `PositionwiseFeedForward` instance can be used as the argument. conv_module (torch.nn.Module): Convolution module instance. `ConvlutionModule` instance can be used as the argument. dropout_rate (float): Dropout rate. normalize_before (bool): True: use layer_norm before each sub-block. False: use layer_norm after each sub-block. """ def __init__( self, size: int, self_attn: torch.nn.Module, src_attn: tp.Optional[torch.nn.Module] = None, feed_forward: tp.Optional[nn.Module] = None, feed_forward_macaron: tp.Optional[nn.Module] = None, conv_module: tp.Optional[nn.Module] = None, dropout_rate: float = 0.1, normalize_before: bool = True, ): """Construct an EncoderLayer object.""" super().__init__() self.self_attn = self_attn self.src_attn = src_attn self.feed_forward = feed_forward self.feed_forward_macaron = feed_forward_macaron self.conv_module = conv_module self.norm_ff = nn.LayerNorm(size, eps=1e-5) # for the FNN module self.norm_mha = nn.LayerNorm(size, eps=1e-5) # for the MHA module if src_attn is not None: self.norm_mha2 = nn.LayerNorm(size, eps=1e-5) # for the MHA module(src_attn) if feed_forward_macaron is not None: self.norm_ff_macaron = nn.LayerNorm(size, eps=1e-5) self.ff_scale = 0.5 else: self.ff_scale = 1.0 if self.conv_module is not None: self.norm_conv = nn.LayerNorm(size, eps=1e-5) # for the CNN module self.norm_final = nn.LayerNorm( size, eps=1e-5) # for the final output of the block self.dropout = nn.Dropout(dropout_rate) self.size = size self.normalize_before = normalize_before def forward( self, x: torch.Tensor, mask: torch.Tensor, # src-attention memory: torch.Tensor, memory_mask: torch.Tensor, pos_emb: torch.Tensor, mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)), cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)), ) -> tp.Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: """Compute encoded features. Args: x (torch.Tensor): (#batch, time, size) mask (torch.Tensor): Mask tensor for the input (#batch, timeļ¼Œtime), (0, 0, 0) means fake mask. pos_emb (torch.Tensor): positional encoding, must not be None for ConformerEncoderLayer. mask_pad (torch.Tensor): batch padding mask used for conv module. (#batch, 1, time), (0, 0, 0) means fake mask. att_cache (torch.Tensor): Cache tensor of the KEY & VALUE (#batch=1, head, cache_t1, d_k * 2), head * d_k == size. cnn_cache (torch.Tensor): Convolution cache in conformer layer (#batch=1, size, cache_t2) Returns: torch.Tensor: Output tensor (#batch, time, size). torch.Tensor: Mask tensor (#batch, time, time). torch.Tensor: att_cache tensor, (#batch=1, head, cache_t1 + time, d_k * 2). torch.Tensor: cnn_cahce tensor (#batch, size, cache_t2). """ # whether to use macaron style if self.feed_forward_macaron is not None: residual = x if self.normalize_before: x = self.norm_ff_macaron(x) x = residual + self.ff_scale * self.dropout( self.feed_forward_macaron(x)) if not self.normalize_before: x = self.norm_ff_macaron(x) # multi-headed self-attention module residual = x if self.normalize_before: x = self.norm_mha(x) x_att, new_att_cache = self.self_attn(x, x, x, mask, pos_emb, att_cache) x = residual + self.dropout(x_att) if not self.normalize_before: x = self.norm_mha(x) # multi-headed cross-attention module if self.src_attn is not None: residual = x if self.normalize_before: x = self.norm_mha2(x) x_att, _ = self.src_attn(x, memory, memory, memory_mask) x = residual + self.dropout(x_att) if not self.normalize_before: x = self.norm_mha2(x) # convolution module # Fake new cnn cache here, and then change it in conv_module new_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device) if self.conv_module is not None: residual = x if self.normalize_before: x = self.norm_conv(x) x, new_cnn_cache = self.conv_module(x, mask_pad, cnn_cache) x = residual + self.dropout(x) if not self.normalize_before: x = self.norm_conv(x) # feed forward module residual = x if self.normalize_before: x = self.norm_ff(x) x = residual + self.ff_scale * self.dropout(self.feed_forward(x)) if not self.normalize_before: x = self.norm_ff(x) if self.conv_module is not None: x = self.norm_final(x) return x, mask, new_att_cache, new_cnn_cache class EspnetRelPositionalEncoding(torch.nn.Module): """Relative positional encoding module (new implementation). Details can be found in https://github.com/espnet/espnet/pull/2816. See : Appendix B in https://arxiv.org/abs/1901.02860 Args: d_model (int): Embedding dimension. dropout_rate (float): Dropout rate. max_len (int): Maximum input length. """ def __init__(self, d_model, dropout_rate, max_len=5000): """Construct an PositionalEncoding object.""" super(EspnetRelPositionalEncoding, self).__init__() self.d_model = d_model self.xscale = math.sqrt(self.d_model) self.dropout = torch.nn.Dropout(p=dropout_rate) self.pe = None self.extend_pe(torch.tensor(0.0).expand(1, max_len)) def extend_pe(self, x): """Reset the positional encodings.""" if self.pe is not None: # self.pe contains both positive and negative parts # the length of self.pe is 2 * input_len - 1 if self.pe.size(1) >= x.size(1) * 2 - 1: if self.pe.dtype != x.dtype or self.pe.device != x.device: self.pe = self.pe.to(dtype=x.dtype, device=x.device) return # Suppose `i` means to the position of query vecotr and `j` means the # position of key vector. We use position relative positions when keys # are to the left (i>j) and negative relative positions otherwise (i torch.Tensor: """ For getting encoding in a streaming fashion Attention!!!!! we apply dropout only once at the whole utterance level in a none streaming way, but will call this function several times with increasing input size in a streaming scenario, so the dropout will be applied several times. Args: offset (int or torch.tensor): start offset size (int): required size of position encoding Returns: torch.Tensor: Corresponding encoding """ pos_emb = self.pe[ :, self.pe.size(1) // 2 - size + 1 : self.pe.size(1) // 2 + size, ] return pos_emb class LinearNoSubsampling(torch.nn.Module): """Linear transform the input without subsampling Args: idim (int): Input dimension. odim (int): Output dimension. dropout_rate (float): Dropout rate. """ def __init__(self, idim: int, odim: int, dropout_rate: float, pos_enc_class: torch.nn.Module): """Construct an linear object.""" super().__init__() self.out = torch.nn.Sequential( torch.nn.Linear(idim, odim), torch.nn.LayerNorm(odim, eps=1e-5), torch.nn.Dropout(dropout_rate), ) self.pos_enc = pos_enc_class self.right_context = 0 self.subsampling_rate = 1 def forward( self, x: torch.Tensor, x_mask: torch.Tensor, offset: tp.Union[int, torch.Tensor] = 0 ) -> tp.Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """Input x. Args: x (torch.Tensor): Input tensor (#batch, time, idim). x_mask (torch.Tensor): Input mask (#batch, 1, time). Returns: torch.Tensor: linear input tensor (#batch, time', odim), where time' = time . torch.Tensor: linear input mask (#batch, 1, time'), where time' = time . """ x = self.out(x) x, pos_emb = self.pos_enc(x, offset) return x, pos_emb, x_mask class ConformerDecoderV2(nn.Module): def __init__(self, input_size: int = 512, output_size: int = 512, attention_heads: int = 8, linear_units: int = 2048, num_blocks: int = 6, dropout_rate: float = 0.01, srcattention_start_index: int = 0, srcattention_end_index: int = 2, attention_dropout_rate: float = 0.01, positional_dropout_rate: float = 0.01, key_bias: bool = True, normalize_before: bool = True, ): super().__init__() self.num_blocks = num_blocks self.normalize_before = normalize_before self.output_size = output_size self.embed = LinearNoSubsampling( input_size, output_size, dropout_rate, EspnetRelPositionalEncoding(output_size, positional_dropout_rate), ) self.encoders = torch.nn.ModuleList() for i in range(self.num_blocks): # construct src attention if srcattention_start_index <= i <= srcattention_end_index: srcattention_layer = MultiHeadedAttention( attention_heads, output_size, attention_dropout_rate, key_bias ) else: srcattention_layer = None # construct self attention selfattention_layer = RelPositionMultiHeadedAttention( attention_heads, output_size, attention_dropout_rate, key_bias ) # construct ffn ffn_layer = PositionwiseFeedForward( output_size, linear_units, dropout_rate, torch.nn.SiLU() ) self.encoders.append( ConformerDecoderLayer( output_size, selfattention_layer, srcattention_layer, ffn_layer, None, None, dropout_rate, normalize_before=normalize_before ) ) self.after_norm = torch.nn.LayerNorm(output_size, eps=1e-5) def forward_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor, memory: torch.Tensor, memory_masks: torch.Tensor, pos_emb: torch.Tensor, mask_pad: torch.Tensor) -> torch.Tensor: for layer in self.encoders: xs, chunk_masks, _, _ = layer(xs, chunk_masks, memory, memory_masks, pos_emb, mask_pad) return xs def forward(self, xs:torch.Tensor, xs_lens:torch.Tensor, memory:torch.Tensor, memory_lens: torch.Tensor, ): T = xs.size(1) masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T) T2 = memory.size(1) memory_masks = ~make_pad_mask(memory_lens, T2).unsqueeze(1) # (B, 1, T2) xs, pos_emb, masks = self.embed(xs, masks) xs = self.forward_layers(xs, masks, memory, memory_masks, pos_emb, masks) if self.normalize_before: xs = self.after_norm(xs) return xs, masks