import torch def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor: """Make mask tensor containing indices of padded part. See description of make_non_pad_mask. Args: lengths (torch.Tensor): Batch of lengths (B,). Returns: torch.Tensor: Mask tensor containing indices of padded part. Examples: >>> lengths = [5, 3, 2] >>> make_pad_mask(lengths) masks = [[0, 0, 0, 0 ,0], [0, 0, 0, 1, 1], [0, 0, 1, 1, 1]] """ batch_size = lengths.size(0) max_len = max_len if max_len > 0 else lengths.max().item() seq_range = torch.arange(0, max_len, dtype=torch.int64, device=lengths.device) seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len) seq_length_expand = lengths.unsqueeze(-1) mask = seq_range_expand >= seq_length_expand return mask