Spaces:
Running
on
L40S
Running
on
L40S
File size: 1,987 Bytes
4f6613a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
defaults:
- base
- _self_
project: text2semantic_finetune_dual_ar
max_length: 4096
pretrained_ckpt_path: checkpoints/fish-speech-1.4
# Lightning Trainer
trainer:
accumulate_grad_batches: 1
gradient_clip_val: 1.0
gradient_clip_algorithm: "norm"
max_steps: 1000
precision: bf16-true
limit_val_batches: 10
val_check_interval: 100
# Dataset Configuration
tokenizer:
_target_: transformers.AutoTokenizer.from_pretrained
pretrained_model_name_or_path: ${pretrained_ckpt_path}
# Dataset Configuration
train_dataset:
_target_: fish_speech.datasets.semantic.AutoTextSemanticInstructionDataset
proto_files:
- data/protos
tokenizer: ${tokenizer}
causal: true
max_length: ${max_length}
use_speaker: false
interactive_prob: 0.7
val_dataset:
_target_: fish_speech.datasets.semantic.AutoTextSemanticInstructionDataset
proto_files:
- data/protos
tokenizer: ${tokenizer}
causal: true
max_length: ${max_length}
use_speaker: false
interactive_prob: 0.7
data:
_target_: fish_speech.datasets.semantic.SemanticDataModule
train_dataset: ${train_dataset}
val_dataset: ${val_dataset}
num_workers: 4
batch_size: 8
tokenizer: ${tokenizer}
max_length: ${max_length}
# Model Configuration
model:
_target_: fish_speech.models.text2semantic.lit_module.TextToSemantic
model:
_target_: fish_speech.models.text2semantic.llama.BaseTransformer.from_pretrained
path: ${pretrained_ckpt_path}
load_weights: true
max_length: ${max_length}
lora_config: null
optimizer:
_target_: torch.optim.AdamW
_partial_: true
lr: 1e-4
weight_decay: 0
betas: [0.9, 0.95]
eps: 1e-5
lr_scheduler:
_target_: torch.optim.lr_scheduler.LambdaLR
_partial_: true
lr_lambda:
_target_: fish_speech.scheduler.get_constant_schedule_with_warmup_lr_lambda
_partial_: true
num_warmup_steps: 10
# Callbacks
callbacks:
model_checkpoint:
every_n_train_steps: ${trainer.val_check_interval}
|