Spaces:
Running
on
L40S
Running
on
L40S
from __future__ import annotations | |
import os | |
os.environ["USE_LIBUV"] = "0" | |
import datetime | |
import html | |
import json | |
import platform | |
import shutil | |
import signal | |
import subprocess | |
import sys | |
from pathlib import Path | |
import gradio as gr | |
import psutil | |
import yaml | |
from loguru import logger | |
from tqdm import tqdm | |
PYTHON = os.path.join(os.environ.get("PYTHON_FOLDERPATH", ""), "python") | |
sys.path.insert(0, "") | |
print(sys.path) | |
cur_work_dir = Path(os.getcwd()).resolve() | |
print("You are in ", str(cur_work_dir)) | |
from fish_speech.i18n import i18n | |
from fish_speech.webui.launch_utils import Seafoam, is_module_installed, versions_html | |
config_path = cur_work_dir / "fish_speech" / "configs" | |
vqgan_yml_path = config_path / "firefly_gan_vq.yaml" | |
llama_yml_path = config_path / "text2semantic_finetune.yaml" | |
env = os.environ.copy() | |
env["no_proxy"] = "127.0.0.1, localhost, 0.0.0.0" | |
seafoam = Seafoam() | |
def build_html_error_message(error): | |
return f""" | |
<div style="color: red; font-weight: bold;"> | |
{html.escape(error)} | |
</div> | |
""" | |
def build_html_ok_message(msg): | |
return f""" | |
<div style="color: green; font-weight: bold;"> | |
{html.escape(msg)} | |
</div> | |
""" | |
def build_html_href(link, desc, msg): | |
return f""" | |
<span style="color: green; font-weight: bold; display: inline-block"> | |
{html.escape(msg)} | |
<a href="{link}">{desc}</a> | |
</span> | |
""" | |
def load_data_in_raw(path): | |
with open(path, "r", encoding="utf-8") as file: | |
data = file.read() | |
return str(data) | |
def kill_proc_tree(pid, including_parent=True): | |
try: | |
parent = psutil.Process(pid) | |
except psutil.NoSuchProcess: | |
# Process already terminated | |
return | |
children = parent.children(recursive=True) | |
for child in children: | |
try: | |
os.kill(child.pid, signal.SIGTERM) # or signal.SIGKILL | |
except OSError: | |
pass | |
if including_parent: | |
try: | |
os.kill(parent.pid, signal.SIGTERM) # or signal.SIGKILL | |
except OSError: | |
pass | |
system = platform.system() | |
p_label = None | |
p_infer = None | |
p_tensorboard = None | |
def kill_process(pid): | |
if system == "Windows": | |
cmd = "taskkill /t /f /pid %s" % pid | |
# os.system(cmd) | |
subprocess.run(cmd) | |
else: | |
kill_proc_tree(pid) | |
def change_label(if_label): | |
global p_label | |
if if_label == True and p_label is None: | |
url = "http://localhost:3000" | |
remote_url = "https://text-labeler.pages.dev/" | |
try: | |
p_label = subprocess.Popen( | |
[ | |
( | |
"asr-label-linux-x64" | |
if sys.platform == "linux" | |
else "asr-label-win-x64.exe" | |
) | |
] | |
) | |
except FileNotFoundError: | |
logger.warning("asr-label execution not found!") | |
yield build_html_href( | |
link=remote_url, | |
desc=i18n("Optional online ver"), | |
msg=i18n("Opened labeler in browser"), | |
) | |
elif if_label == False and p_label is not None: | |
kill_process(p_label.pid) | |
p_label = None | |
yield build_html_ok_message("Nothing") | |
def clean_infer_cache(): | |
import tempfile | |
temp_dir = Path(tempfile.gettempdir()) | |
gradio_dir = str(temp_dir / "gradio") | |
try: | |
shutil.rmtree(gradio_dir) | |
logger.info(f"Deleted cached audios: {gradio_dir}") | |
except PermissionError: | |
logger.info(f"Permission denied: Unable to delete {gradio_dir}") | |
except FileNotFoundError: | |
logger.info(f"{gradio_dir} was not found") | |
except Exception as e: | |
logger.info(f"An error occurred: {e}") | |
def change_infer( | |
if_infer, | |
host, | |
port, | |
infer_decoder_model, | |
infer_decoder_config, | |
infer_llama_model, | |
infer_compile, | |
): | |
global p_infer | |
if if_infer == True and p_infer == None: | |
env = os.environ.copy() | |
env["GRADIO_SERVER_NAME"] = host | |
env["GRADIO_SERVER_PORT"] = port | |
# 启动第二个进程 | |
url = f"http://{host}:{port}" | |
yield build_html_ok_message( | |
i18n("Inferring interface is launched at {}").format(url) | |
) | |
clean_infer_cache() | |
p_infer = subprocess.Popen( | |
[ | |
PYTHON, | |
"tools/webui.py", | |
"--decoder-checkpoint-path", | |
infer_decoder_model, | |
"--decoder-config-name", | |
infer_decoder_config, | |
"--llama-checkpoint-path", | |
infer_llama_model, | |
] | |
+ (["--compile"] if infer_compile == "Yes" else []), | |
env=env, | |
) | |
elif if_infer == False and p_infer is not None: | |
kill_process(p_infer.pid) | |
p_infer = None | |
yield build_html_error_message(i18n("Infer interface is closed")) | |
js = load_data_in_raw("fish_speech/webui/js/animate.js") | |
css = load_data_in_raw("fish_speech/webui/css/style.css") | |
data_pre_output = (cur_work_dir / "data").resolve() | |
default_model_output = (cur_work_dir / "results").resolve() | |
default_filelist = data_pre_output / "detect.list" | |
data_pre_output.mkdir(parents=True, exist_ok=True) | |
items = [] | |
dict_items = {} | |
def load_yaml_data_in_fact(yml_path): | |
with open(yml_path, "r", encoding="utf-8") as file: | |
yml = yaml.safe_load(file) | |
return yml | |
def write_yaml_data_in_fact(yml, yml_path): | |
with open(yml_path, "w", encoding="utf-8") as file: | |
yaml.safe_dump(yml, file, allow_unicode=True) | |
return yml | |
def generate_tree(directory, depth=0, max_depth=None, prefix=""): | |
if max_depth is not None and depth > max_depth: | |
return "" | |
tree_str = "" | |
files = [] | |
directories = [] | |
for item in os.listdir(directory): | |
if os.path.isdir(os.path.join(directory, item)): | |
directories.append(item) | |
else: | |
files.append(item) | |
entries = directories + files | |
for i, entry in enumerate(entries): | |
connector = "├── " if i < len(entries) - 1 else "└── " | |
tree_str += f"{prefix}{connector}{entry}<br />" | |
if i < len(directories): | |
extension = "│ " if i < len(entries) - 1 else " " | |
tree_str += generate_tree( | |
os.path.join(directory, entry), | |
depth + 1, | |
max_depth, | |
prefix=prefix + extension, | |
) | |
return tree_str | |
def new_explorer(data_path, max_depth): | |
return gr.Markdown( | |
elem_classes=["scrollable-component"], | |
value=generate_tree(data_path, max_depth=max_depth), | |
) | |
def add_item( | |
folder: str, | |
method: str, | |
label_lang: str, | |
if_initial_prompt: bool, | |
initial_prompt: str | None, | |
): | |
folder = folder.strip(" ").strip('"') | |
folder_path = Path(folder) | |
if folder and folder not in items and data_pre_output not in folder_path.parents: | |
if folder_path.is_dir(): | |
items.append(folder) | |
dict_items[folder] = dict( | |
type="folder", | |
method=method, | |
label_lang=label_lang, | |
initial_prompt=initial_prompt if if_initial_prompt else None, | |
) | |
elif folder: | |
err = folder | |
return gr.Checkboxgroup(choices=items), build_html_error_message( | |
i18n("Invalid path: {}").format(err) | |
) | |
formatted_data = json.dumps(dict_items, ensure_ascii=False, indent=4) | |
logger.info("After Adding: " + formatted_data) | |
gr.Info(formatted_data) | |
return gr.Checkboxgroup(choices=items), build_html_ok_message( | |
i18n("Added path successfully!") | |
) | |
def remove_items(selected_items): | |
global items, dict_items | |
to_remove = [item for item in items if item in selected_items] | |
for item in to_remove: | |
del dict_items[item] | |
items = [item for item in items if item in dict_items.keys()] | |
formatted_data = json.dumps(dict_items, ensure_ascii=False, indent=4) | |
logger.info(formatted_data) | |
gr.Warning("After Removing: " + formatted_data) | |
return gr.Checkboxgroup(choices=items, value=[]), build_html_ok_message( | |
i18n("Removed path successfully!") | |
) | |
def show_selected(options): | |
selected_options = ", ".join(options) | |
if options: | |
return i18n("Selected: {}").format(selected_options) | |
else: | |
return i18n("No selected options") | |
from pydub import AudioSegment | |
def convert_to_mono_in_place(audio_path: Path): | |
audio = AudioSegment.from_file(audio_path) | |
if audio.channels > 1: | |
mono_audio = audio.set_channels(1) | |
mono_audio.export(audio_path, format=audio_path.suffix[1:]) | |
logger.info(f"Convert {audio_path} successfully") | |
def list_copy(list_file_path, method): | |
wav_root = data_pre_output | |
lst = [] | |
with list_file_path.open("r", encoding="utf-8") as file: | |
for line in tqdm(file, desc="Processing audio/transcript"): | |
wav_path, speaker_name, language, text = line.strip().split("|") | |
original_wav_path = Path(wav_path) | |
target_wav_path = ( | |
wav_root / original_wav_path.parent.name / original_wav_path.name | |
) | |
lst.append(f"{target_wav_path}|{speaker_name}|{language}|{text}") | |
if target_wav_path.is_file(): | |
continue | |
target_wav_path.parent.mkdir(parents=True, exist_ok=True) | |
if method == i18n("Copy"): | |
shutil.copy(original_wav_path, target_wav_path) | |
else: | |
shutil.move(original_wav_path, target_wav_path.parent) | |
convert_to_mono_in_place(target_wav_path) | |
original_lab_path = original_wav_path.with_suffix(".lab") | |
target_lab_path = ( | |
wav_root | |
/ original_wav_path.parent.name | |
/ original_wav_path.with_suffix(".lab").name | |
) | |
if target_lab_path.is_file(): | |
continue | |
if method == i18n("Copy"): | |
shutil.copy(original_lab_path, target_lab_path) | |
else: | |
shutil.move(original_lab_path, target_lab_path.parent) | |
if method == i18n("Move"): | |
with list_file_path.open("w", encoding="utf-8") as file: | |
file.writelines("\n".join(lst)) | |
del lst | |
return build_html_ok_message(i18n("Use filelist")) | |
def check_files(data_path: str, max_depth: int, label_model: str, label_device: str): | |
global dict_items | |
data_path = Path(data_path) | |
gr.Warning("Pre-processing begins...") | |
for item, content in dict_items.items(): | |
item_path = Path(item) | |
tar_path = data_path / item_path.name | |
if content["type"] == "folder" and item_path.is_dir(): | |
if content["method"] == i18n("Copy"): | |
os.makedirs(tar_path, exist_ok=True) | |
shutil.copytree( | |
src=str(item_path), dst=str(tar_path), dirs_exist_ok=True | |
) | |
elif not tar_path.is_dir(): | |
shutil.move(src=str(item_path), dst=str(tar_path)) | |
for suf in ["wav", "flac", "mp3"]: | |
for audio_path in tar_path.glob(f"**/*.{suf}"): | |
convert_to_mono_in_place(audio_path) | |
cur_lang = content["label_lang"] | |
initial_prompt = content["initial_prompt"] | |
transcribe_cmd = [ | |
PYTHON, | |
"tools/whisper_asr.py", | |
"--model-size", | |
label_model, | |
"--device", | |
label_device, | |
"--audio-dir", | |
tar_path, | |
"--save-dir", | |
tar_path, | |
"--language", | |
cur_lang, | |
] | |
if initial_prompt is not None: | |
transcribe_cmd += ["--initial-prompt", initial_prompt] | |
if cur_lang != "IGNORE": | |
try: | |
gr.Warning("Begin To Transcribe") | |
subprocess.run( | |
transcribe_cmd, | |
env=env, | |
) | |
except Exception: | |
print("Transcription error occurred") | |
elif content["type"] == "file" and item_path.is_file(): | |
list_copy(item_path, content["method"]) | |
return build_html_ok_message(i18n("Move files successfully")), new_explorer( | |
data_path, max_depth=max_depth | |
) | |
def generate_folder_name(): | |
now = datetime.datetime.now() | |
folder_name = now.strftime("%Y%m%d_%H%M%S") | |
return folder_name | |
def train_process( | |
data_path: str, | |
option: str, | |
# llama config | |
llama_ckpt, | |
llama_base_config, | |
llama_lr, | |
llama_maxsteps, | |
llama_data_num_workers, | |
llama_data_batch_size, | |
llama_data_max_length, | |
llama_precision, | |
llama_check_interval, | |
llama_grad_batches, | |
llama_use_speaker, | |
llama_use_lora, | |
): | |
backend = "nccl" if sys.platform == "linux" else "gloo" | |
new_project = generate_folder_name() | |
print("New Project Name: ", new_project) | |
if option == "VQGAN": | |
msg = "Skipped VQGAN Training." | |
gr.Warning(msg) | |
logger.info(msg) | |
if option == "LLAMA": | |
msg = "LLAMA Training begins..." | |
gr.Warning(msg) | |
logger.info(msg) | |
subprocess.run( | |
[ | |
PYTHON, | |
"tools/vqgan/extract_vq.py", | |
str(data_pre_output), | |
"--num-workers", | |
"1", | |
"--batch-size", | |
"16", | |
"--config-name", | |
"firefly_gan_vq", | |
"--checkpoint-path", | |
"checkpoints/fish-speech-1.4/firefly-gan-vq-fsq-8x1024-21hz-generator.pth", | |
] | |
) | |
subprocess.run( | |
[ | |
PYTHON, | |
"tools/llama/build_dataset.py", | |
"--input", | |
str(data_pre_output), | |
"--text-extension", | |
".lab", | |
"--num-workers", | |
"16", | |
] | |
) | |
ckpt_path = "checkpoints/fish-speech-1.4/model.pth" | |
lora_prefix = "lora_" if llama_use_lora else "" | |
llama_name = lora_prefix + "text2semantic_" + new_project | |
latest = next( | |
iter( | |
sorted( | |
[ | |
str(p.relative_to("results")) | |
for p in Path("results").glob(lora_prefix + "text2sem*/") | |
], | |
reverse=True, | |
) | |
), | |
llama_name, | |
) | |
project = ( | |
llama_name | |
if llama_ckpt == i18n("new") | |
else ( | |
latest | |
if llama_ckpt == i18n("latest") | |
else Path(llama_ckpt).relative_to("results") | |
) | |
) | |
logger.info(project) | |
if llama_check_interval > llama_maxsteps: | |
llama_check_interval = llama_maxsteps | |
train_cmd = [ | |
PYTHON, | |
"fish_speech/train.py", | |
"--config-name", | |
"text2semantic_finetune", | |
f"project={project}", | |
f"trainer.strategy.process_group_backend={backend}", | |
f"train_dataset.proto_files={str(['data/quantized-dataset-ft'])}", | |
f"val_dataset.proto_files={str(['data/quantized-dataset-ft'])}", | |
f"model.optimizer.lr={llama_lr}", | |
f"trainer.max_steps={llama_maxsteps}", | |
f"data.num_workers={llama_data_num_workers}", | |
f"data.batch_size={llama_data_batch_size}", | |
f"max_length={llama_data_max_length}", | |
f"trainer.precision={llama_precision}", | |
f"trainer.val_check_interval={llama_check_interval}", | |
f"trainer.accumulate_grad_batches={llama_grad_batches}", | |
f"train_dataset.interactive_prob={llama_use_speaker}", | |
] + ([f"+lora@model.model.lora_config=r_8_alpha_16"] if llama_use_lora else []) | |
logger.info(train_cmd) | |
subprocess.run(train_cmd) | |
return build_html_ok_message(i18n("Training stopped")) | |
def tensorboard_process( | |
if_tensorboard: bool, | |
tensorboard_dir: str, | |
host: str, | |
port: str, | |
): | |
global p_tensorboard | |
if if_tensorboard == True and p_tensorboard == None: | |
url = f"http://{host}:{port}" | |
yield build_html_ok_message( | |
i18n("Tensorboard interface is launched at {}").format(url) | |
) | |
prefix = ["tensorboard"] | |
if Path("fishenv").exists(): | |
prefix = ["fishenv/env/python.exe", "fishenv/env/Scripts/tensorboard.exe"] | |
p_tensorboard = subprocess.Popen( | |
prefix | |
+ [ | |
"--logdir", | |
tensorboard_dir, | |
"--host", | |
host, | |
"--port", | |
port, | |
"--reload_interval", | |
"120", | |
] | |
) | |
elif if_tensorboard == False and p_tensorboard != None: | |
kill_process(p_tensorboard.pid) | |
p_tensorboard = None | |
yield build_html_error_message(i18n("Tensorboard interface is closed")) | |
def fresh_tb_dir(): | |
return gr.Dropdown( | |
choices=[str(p) for p in Path("results").glob("**/tensorboard/")] | |
) | |
def list_decoder_models(): | |
paths = [str(p) for p in Path("checkpoints").glob("fish*/firefly*.pth")] | |
if not paths: | |
logger.warning("No decoder model found") | |
return paths | |
def list_llama_models(): | |
choices = [str(p.parent) for p in Path("checkpoints").glob("merged*/*model*.pth")] | |
choices += [str(p.parent) for p in Path("checkpoints").glob("fish*/*model*.pth")] | |
choices += [str(p.parent) for p in Path("checkpoints").glob("fs*/*model*.pth")] | |
choices = sorted(choices, reverse=True) | |
if not choices: | |
logger.warning("No LLaMA model found") | |
return choices | |
def list_lora_llama_models(): | |
choices = sorted( | |
[str(p) for p in Path("results").glob("lora*/**/*.ckpt")], reverse=True | |
) | |
if not choices: | |
logger.warning("No LoRA LLaMA model found") | |
return choices | |
def fresh_decoder_model(): | |
return gr.Dropdown(choices=list_decoder_models()) | |
def fresh_llama_ckpt(llama_use_lora): | |
return gr.Dropdown( | |
choices=[i18n("latest"), i18n("new")] | |
+ ( | |
[str(p) for p in Path("results").glob("text2sem*/")] | |
if not llama_use_lora | |
else [str(p) for p in Path("results").glob("lora_*/")] | |
) | |
) | |
def fresh_llama_model(): | |
return gr.Dropdown(choices=list_llama_models()) | |
def llama_lora_merge(llama_weight, lora_llama_config, lora_weight, llama_lora_output): | |
if ( | |
lora_weight is None | |
or not Path(lora_weight).exists() | |
or not Path(llama_weight).exists() | |
): | |
return build_html_error_message( | |
i18n( | |
"Path error, please check the model file exists in the corresponding path" | |
) | |
) | |
gr.Warning("Merging begins...") | |
merge_cmd = [ | |
PYTHON, | |
"tools/llama/merge_lora.py", | |
"--lora-config", | |
"r_8_alpha_16", | |
"--lora-weight", | |
lora_weight, | |
"--output", | |
llama_lora_output + "_" + generate_folder_name(), | |
] | |
logger.info(merge_cmd) | |
subprocess.run(merge_cmd) | |
return build_html_ok_message(i18n("Merge successfully")) | |
def llama_quantify(llama_weight, quantify_mode): | |
if llama_weight is None or not Path(llama_weight).exists(): | |
return build_html_error_message( | |
i18n( | |
"Path error, please check the model file exists in the corresponding path" | |
) | |
) | |
gr.Warning("Quantifying begins...") | |
now = generate_folder_name() | |
quantify_cmd = [ | |
PYTHON, | |
"tools/llama/quantize.py", | |
"--checkpoint-path", | |
llama_weight, | |
"--mode", | |
quantify_mode, | |
"--timestamp", | |
now, | |
] | |
logger.info(quantify_cmd) | |
subprocess.run(quantify_cmd) | |
if quantify_mode == "int8": | |
quantize_path = str( | |
Path(os.getcwd()) / "checkpoints" / f"fs-1.2-{quantify_mode}-{now}" | |
) | |
else: | |
quantize_path = str( | |
Path(os.getcwd()) / "checkpoints" / f"fs-1.2-{quantify_mode}-g128-{now}" | |
) | |
return build_html_ok_message( | |
i18n("Quantify successfully") + f"Path: {quantize_path}" | |
) | |
init_vqgan_yml = load_yaml_data_in_fact(vqgan_yml_path) | |
init_llama_yml = load_yaml_data_in_fact(llama_yml_path) | |
with gr.Blocks( | |
head="<style>\n" + css + "\n</style>", | |
js=js, | |
theme=seafoam, | |
analytics_enabled=False, | |
title="Fish Speech", | |
) as demo: | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Tab("\U0001F4D6 " + i18n("Data Preprocessing")): | |
with gr.Row(): | |
textbox = gr.Textbox( | |
label="\U0000270F " | |
+ i18n("Input Audio & Source Path for Transcription"), | |
info=i18n("Speaker is identified by the folder name"), | |
interactive=True, | |
) | |
with gr.Row(equal_height=False): | |
with gr.Column(): | |
output_radio = gr.Radio( | |
label="\U0001F4C1 " | |
+ i18n("Select source file processing method"), | |
choices=[i18n("Copy"), i18n("Move")], | |
value=i18n("Copy"), | |
interactive=True, | |
) | |
with gr.Column(): | |
error = gr.HTML(label=i18n("Error Message")) | |
if_label = gr.Checkbox( | |
label=i18n("Open Labeler WebUI"), scale=0, show_label=True | |
) | |
with gr.Row(): | |
label_device = gr.Dropdown( | |
label=i18n("Labeling Device"), | |
info=i18n( | |
"It is recommended to use CUDA, if you have low configuration, use CPU" | |
), | |
choices=["cpu", "cuda"], | |
value="cuda", | |
interactive=True, | |
) | |
label_model = gr.Dropdown( | |
label=i18n("Whisper Model"), | |
info=i18n("Faster Whisper, Up to 5g GPU memory usage"), | |
choices=["large-v3", "medium"], | |
value="large-v3", | |
interactive=True, | |
) | |
label_radio = gr.Dropdown( | |
label=i18n("Optional Label Language"), | |
info=i18n( | |
"If there is no corresponding text for the audio, apply ASR for assistance, support .txt or .lab format" | |
), | |
choices=[ | |
(i18n("Chinese"), "zh"), | |
(i18n("English"), "en"), | |
(i18n("Japanese"), "ja"), | |
(i18n("Disabled"), "IGNORE"), | |
(i18n("auto"), "auto"), | |
], | |
value="IGNORE", | |
interactive=True, | |
) | |
with gr.Row(): | |
if_initial_prompt = gr.Checkbox( | |
value=False, | |
label=i18n("Enable Initial Prompt"), | |
min_width=120, | |
scale=0, | |
) | |
initial_prompt = gr.Textbox( | |
label=i18n("Initial Prompt"), | |
info=i18n( | |
"Initial prompt can provide contextual or vocabulary-specific guidance to the model." | |
), | |
placeholder="This audio introduces the basic concepts and applications of artificial intelligence and machine learning.", | |
interactive=False, | |
) | |
with gr.Row(): | |
add_button = gr.Button( | |
"\U000027A1 " + i18n("Add to Processing Area"), | |
variant="primary", | |
) | |
remove_button = gr.Button( | |
"\U000026D4 " + i18n("Remove Selected Data") | |
) | |
with gr.Tab("\U0001F6E0 " + i18n("Training Configuration")): | |
with gr.Row(): | |
model_type_radio = gr.Radio( | |
label=i18n( | |
"Select the model to be trained (Depending on the Tab page you are on)" | |
), | |
interactive=False, | |
choices=["VQGAN", "LLAMA"], | |
value="VQGAN", | |
) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Tab(label=i18n("VQGAN Configuration")) as vqgan_page: | |
gr.HTML("You don't need to train this model!") | |
with gr.Tab(label=i18n("LLAMA Configuration")) as llama_page: | |
with gr.Row(equal_height=False): | |
llama_use_lora = gr.Checkbox( | |
label=i18n("Use LoRA"), | |
info=i18n( | |
"Use LoRA can save GPU memory, but may reduce the quality of the model" | |
), | |
value=True, | |
interactive=True, | |
) | |
llama_ckpt = gr.Dropdown( | |
label=i18n("Select LLAMA ckpt"), | |
choices=[i18n("latest"), i18n("new")] | |
+ [ | |
str(p) | |
for p in Path("results").glob("text2sem*/") | |
] | |
+ [str(p) for p in Path("results").glob("lora*/")], | |
value=i18n("latest"), | |
interactive=True, | |
) | |
with gr.Row(equal_height=False): | |
llama_lr_slider = gr.Slider( | |
label=i18n("Initial Learning Rate"), | |
info=i18n( | |
"lr smaller -> usually train slower but more stable" | |
), | |
interactive=True, | |
minimum=1e-5, | |
maximum=1e-4, | |
step=1e-5, | |
value=5e-5, | |
) | |
llama_maxsteps_slider = gr.Slider( | |
label=i18n("Maximum Training Steps"), | |
info=i18n( | |
"recommend: max_steps = num_audios // batch_size * (2 to 5)" | |
), | |
interactive=True, | |
minimum=1, | |
maximum=10000, | |
step=1, | |
value=50, | |
) | |
with gr.Row(equal_height=False): | |
llama_base_config = gr.Dropdown( | |
label=i18n("Model Size"), | |
choices=[ | |
"text2semantic_finetune", | |
], | |
value="text2semantic_finetune", | |
) | |
llama_data_num_workers_slider = gr.Slider( | |
label=i18n("Number of Workers"), | |
minimum=1, | |
maximum=32, | |
step=1, | |
value=4, | |
) | |
with gr.Row(equal_height=False): | |
llama_data_batch_size_slider = gr.Slider( | |
label=i18n("Batch Size"), | |
interactive=True, | |
minimum=1, | |
maximum=32, | |
step=1, | |
value=2, | |
) | |
llama_data_max_length_slider = gr.Slider( | |
label=i18n("Maximum Length per Sample"), | |
interactive=True, | |
minimum=1024, | |
maximum=4096, | |
step=128, | |
value=2048, | |
) | |
with gr.Row(equal_height=False): | |
llama_precision_dropdown = gr.Dropdown( | |
label=i18n("Precision"), | |
info=i18n( | |
"bf16-true is recommended for 30+ series GPU, 16-mixed is recommended for 10+ series GPU" | |
), | |
interactive=True, | |
choices=["32", "bf16-true", "16-mixed"], | |
value="bf16-true", | |
) | |
llama_check_interval_slider = gr.Slider( | |
label=i18n("Save model every n steps"), | |
info=i18n( | |
"make sure that it's not greater than max_steps" | |
), | |
interactive=True, | |
minimum=1, | |
maximum=1000, | |
step=1, | |
value=50, | |
) | |
with gr.Row(equal_height=False): | |
llama_grad_batches = gr.Slider( | |
label=i18n("Accumulate Gradient Batches"), | |
interactive=True, | |
minimum=1, | |
maximum=20, | |
step=1, | |
value=init_llama_yml["trainer"][ | |
"accumulate_grad_batches" | |
], | |
) | |
llama_use_speaker = gr.Slider( | |
label=i18n( | |
"Probability of applying Speaker Condition" | |
), | |
interactive=True, | |
minimum=0.1, | |
maximum=1.0, | |
step=0.05, | |
value=init_llama_yml["train_dataset"][ | |
"interactive_prob" | |
], | |
) | |
with gr.Tab(label=i18n("Merge LoRA"), id=4): | |
with gr.Row(equal_height=False): | |
llama_weight = gr.Dropdown( | |
label=i18n("Base LLAMA Model"), | |
info=i18n( | |
"Type the path or select from the dropdown" | |
), | |
choices=[ | |
"checkpoints/fish-speech-1.4/model.pth", | |
], | |
value="checkpoints/fish-speech-1.4/model.pth", | |
allow_custom_value=True, | |
interactive=True, | |
) | |
with gr.Row(equal_height=False): | |
lora_weight = gr.Dropdown( | |
label=i18n("LoRA Model to be merged"), | |
info=i18n( | |
"Type the path or select from the dropdown" | |
), | |
choices=[ | |
str(p) | |
for p in Path("results").glob("lora*/**/*.ckpt") | |
], | |
allow_custom_value=True, | |
interactive=True, | |
) | |
lora_llama_config = gr.Dropdown( | |
label=i18n("LLAMA Model Config"), | |
info=i18n( | |
"Type the path or select from the dropdown" | |
), | |
choices=[ | |
"text2semantic_finetune", | |
], | |
value="text2semantic_finetune", | |
allow_custom_value=True, | |
) | |
with gr.Row(equal_height=False): | |
llama_lora_output = gr.Dropdown( | |
label=i18n("Output Path"), | |
info=i18n( | |
"Type the path or select from the dropdown" | |
), | |
value="checkpoints/merged", | |
choices=["checkpoints/merged"], | |
allow_custom_value=True, | |
interactive=True, | |
) | |
with gr.Row(equal_height=False): | |
llama_lora_merge_btn = gr.Button( | |
value=i18n("Merge"), variant="primary" | |
) | |
with gr.Tab(label=i18n("Model Quantization"), id=5): | |
with gr.Row(equal_height=False): | |
llama_weight_to_quantify = gr.Dropdown( | |
label=i18n("Base LLAMA Model"), | |
info=i18n( | |
"Type the path or select from the dropdown" | |
), | |
choices=list_llama_models(), | |
value="checkpoints/fish-speech-1.4", | |
allow_custom_value=True, | |
interactive=True, | |
) | |
quantify_mode = gr.Dropdown( | |
label=i18n("Post-quantification Precision"), | |
info=i18n( | |
"The lower the quantitative precision, the more the effectiveness may decrease, but the greater the efficiency will increase" | |
), | |
choices=["int8", "int4"], | |
value="int8", | |
allow_custom_value=False, | |
interactive=True, | |
) | |
with gr.Row(equal_height=False): | |
llama_quantify_btn = gr.Button( | |
value=i18n("Quantify"), variant="primary" | |
) | |
with gr.Tab(label="Tensorboard", id=6): | |
with gr.Row(equal_height=False): | |
tb_host = gr.Textbox( | |
label=i18n("Tensorboard Host"), value="127.0.0.1" | |
) | |
tb_port = gr.Textbox( | |
label=i18n("Tensorboard Port"), value="11451" | |
) | |
with gr.Row(equal_height=False): | |
tb_dir = gr.Dropdown( | |
label=i18n("Tensorboard Log Path"), | |
allow_custom_value=True, | |
choices=[ | |
str(p) | |
for p in Path("results").glob("**/tensorboard/") | |
], | |
) | |
with gr.Row(equal_height=False): | |
if_tb = gr.Checkbox( | |
label=i18n("Open Tensorboard"), | |
) | |
with gr.Tab("\U0001F9E0 " + i18n("Inference Configuration")): | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Accordion( | |
label="\U0001F5A5 " | |
+ i18n("Inference Server Configuration"), | |
open=False, | |
): | |
with gr.Row(): | |
infer_host_textbox = gr.Textbox( | |
label=i18n("WebUI Host"), value="127.0.0.1" | |
) | |
infer_port_textbox = gr.Textbox( | |
label=i18n("WebUI Port"), value="7862" | |
) | |
with gr.Row(): | |
infer_decoder_model = gr.Dropdown( | |
label=i18n("Decoder Model Path"), | |
info=i18n( | |
"Type the path or select from the dropdown" | |
), | |
choices=list_decoder_models(), | |
value="checkpoints/fish-speech-1.4/firefly-gan-vq-fsq-8x1024-21hz-generator.pth", | |
allow_custom_value=True, | |
) | |
infer_decoder_config = gr.Dropdown( | |
label=i18n("Decoder Model Config"), | |
info=i18n("Changing with the Model Path"), | |
value="firefly_gan_vq", | |
choices=[ | |
"firefly_gan_vq", | |
], | |
allow_custom_value=True, | |
) | |
with gr.Row(): | |
infer_llama_model = gr.Dropdown( | |
label=i18n("LLAMA Model Path"), | |
info=i18n( | |
"Type the path or select from the dropdown" | |
), | |
value="checkpoints/fish-speech-1.4", | |
choices=list_llama_models(), | |
allow_custom_value=True, | |
) | |
with gr.Row(): | |
infer_compile = gr.Radio( | |
label=i18n("Compile Model"), | |
info=i18n( | |
"Compile the model can significantly reduce the inference time, but will increase cold start time" | |
), | |
choices=["Yes", "No"], | |
value=( | |
"Yes" if (sys.platform == "linux") else "No" | |
), | |
interactive=is_module_installed("triton"), | |
) | |
with gr.Row(): | |
infer_checkbox = gr.Checkbox( | |
label=i18n("Open Inference Server") | |
) | |
infer_error = gr.HTML(label=i18n("Inference Server Error")) | |
with gr.Column(): | |
train_error = gr.HTML(label=i18n("Training Error")) | |
checkbox_group = gr.CheckboxGroup( | |
label="\U0001F4CA " + i18n("Data Source"), | |
info=i18n( | |
"The path of the input folder on the left or the filelist. Whether checked or not, it will be used for subsequent training in this list." | |
), | |
elem_classes=["data_src"], | |
) | |
train_box = gr.Textbox( | |
label=i18n("Data Preprocessing Path"), | |
value=str(data_pre_output), | |
interactive=False, | |
) | |
model_box = gr.Textbox( | |
label="\U0001F4BE " + i18n("Model Output Path"), | |
value=str(default_model_output), | |
interactive=False, | |
) | |
with gr.Accordion( | |
i18n( | |
"View the status of the preprocessing folder (use the slider to control the depth of the tree)" | |
), | |
elem_classes=["scrollable-component"], | |
elem_id="file_accordion", | |
): | |
tree_slider = gr.Slider( | |
minimum=0, | |
maximum=3, | |
value=0, | |
step=1, | |
show_label=False, | |
container=False, | |
) | |
file_markdown = new_explorer(str(data_pre_output), 0) | |
with gr.Row(equal_height=False): | |
admit_btn = gr.Button( | |
"\U00002705 " + i18n("File Preprocessing"), | |
variant="primary", | |
) | |
fresh_btn = gr.Button("\U0001F503", scale=0, min_width=80) | |
help_button = gr.Button("\U00002753", scale=0, min_width=80) # question | |
train_btn = gr.Button(i18n("Start Training"), variant="primary") | |
footer = load_data_in_raw("fish_speech/webui/html/footer.html") | |
footer = footer.format( | |
versions=versions_html(), | |
api_docs="https://speech.fish.audio/inference/#http-api", | |
) | |
gr.HTML(footer, elem_id="footer") | |
vqgan_page.select(lambda: "VQGAN", None, model_type_radio) | |
llama_page.select(lambda: "LLAMA", None, model_type_radio) | |
add_button.click( | |
fn=add_item, | |
inputs=[textbox, output_radio, label_radio, if_initial_prompt, initial_prompt], | |
outputs=[checkbox_group, error], | |
) | |
remove_button.click( | |
fn=remove_items, inputs=[checkbox_group], outputs=[checkbox_group, error] | |
) | |
checkbox_group.change(fn=show_selected, inputs=checkbox_group, outputs=[error]) | |
help_button.click( | |
fn=None, | |
js='() => { window.open("https://speech.fish.audio/", "newwindow", "height=100, width=400, ' | |
'toolbar=no, menubar=no, scrollbars=no, resizable=no, location=no, status=no")}', | |
) | |
if_label.change(fn=change_label, inputs=[if_label], outputs=[error]) | |
if_initial_prompt.change( | |
fn=lambda x: gr.Textbox(value="", interactive=x), | |
inputs=[if_initial_prompt], | |
outputs=[initial_prompt], | |
) | |
train_btn.click( | |
fn=train_process, | |
inputs=[ | |
train_box, | |
model_type_radio, | |
# llama config | |
llama_ckpt, | |
llama_base_config, | |
llama_lr_slider, | |
llama_maxsteps_slider, | |
llama_data_num_workers_slider, | |
llama_data_batch_size_slider, | |
llama_data_max_length_slider, | |
llama_precision_dropdown, | |
llama_check_interval_slider, | |
llama_grad_batches, | |
llama_use_speaker, | |
llama_use_lora, | |
], | |
outputs=[train_error], | |
) | |
if_tb.change( | |
fn=tensorboard_process, | |
inputs=[if_tb, tb_dir, tb_host, tb_port], | |
outputs=[train_error], | |
) | |
tb_dir.change(fn=fresh_tb_dir, inputs=[], outputs=[tb_dir]) | |
infer_decoder_model.change( | |
fn=fresh_decoder_model, inputs=[], outputs=[infer_decoder_model] | |
) | |
infer_llama_model.change( | |
fn=fresh_llama_model, inputs=[], outputs=[infer_llama_model] | |
) | |
llama_weight.change(fn=fresh_llama_model, inputs=[], outputs=[llama_weight]) | |
admit_btn.click( | |
fn=check_files, | |
inputs=[train_box, tree_slider, label_model, label_device], | |
outputs=[error, file_markdown], | |
) | |
fresh_btn.click( | |
fn=new_explorer, inputs=[train_box, tree_slider], outputs=[file_markdown] | |
) | |
llama_use_lora.change( | |
fn=fresh_llama_ckpt, inputs=[llama_use_lora], outputs=[llama_ckpt] | |
) | |
llama_ckpt.change( | |
fn=fresh_llama_ckpt, inputs=[llama_use_lora], outputs=[llama_ckpt] | |
) | |
lora_weight.change( | |
fn=lambda: gr.Dropdown(choices=list_lora_llama_models()), | |
inputs=[], | |
outputs=[lora_weight], | |
) | |
llama_lora_merge_btn.click( | |
fn=llama_lora_merge, | |
inputs=[llama_weight, lora_llama_config, lora_weight, llama_lora_output], | |
outputs=[train_error], | |
) | |
llama_quantify_btn.click( | |
fn=llama_quantify, | |
inputs=[llama_weight_to_quantify, quantify_mode], | |
outputs=[train_error], | |
) | |
infer_checkbox.change( | |
fn=change_infer, | |
inputs=[ | |
infer_checkbox, | |
infer_host_textbox, | |
infer_port_textbox, | |
infer_decoder_model, | |
infer_decoder_config, | |
infer_llama_model, | |
infer_compile, | |
], | |
outputs=[infer_error], | |
) | |
demo.launch(inbrowser=True) | |