Spaces:
Running
on
A10G
Running
on
A10G
import os | |
import subprocess as sp | |
import sys | |
import time | |
from datetime import timedelta | |
from functools import lru_cache | |
from pathlib import Path | |
from random import Random | |
import click | |
import numpy as np | |
import torch | |
import torchaudio | |
from hydra import compose, initialize | |
from hydra.utils import instantiate | |
from lightning import LightningModule | |
from loguru import logger | |
from omegaconf import OmegaConf | |
from tools.file import AUDIO_EXTENSIONS, list_files, load_filelist | |
# register eval resolver | |
OmegaConf.register_new_resolver("eval", eval) | |
# This file is used to convert the audio files to text files using the Whisper model. | |
# It's mainly used to generate the training data for the VQ model. | |
RANK = int(os.environ.get("SLURM_PROCID", 0)) | |
WORLD_SIZE = int(os.environ.get("SLURM_NTASKS", 1)) | |
logger_format = ( | |
"<green>{time:YYYY-MM-DD HH:mm:ss.SSS}</green> | " | |
"<level>{level: <8}</level> | " | |
"<cyan>{name}</cyan>:<cyan>{function}</cyan>:<cyan>{line}</cyan> | " | |
"{extra[rank]} - <level>{message}</level>" | |
) | |
logger.configure(extra={"rank": f"RANK: {RANK} / {WORLD_SIZE}"}) | |
logger.remove() | |
logger.add(sys.stderr, format=logger_format) | |
def get_model( | |
config_name: str = "firefly_gan_vq", | |
checkpoint_path: str = "checkpoints/fish-speech-1.4/firefly-gan-vq-fsq-8x1024-21hz-generator.pth", | |
device: str | torch.device = "cuda", | |
): | |
with initialize(version_base="1.3", config_path="../../fish_speech/configs"): | |
cfg = compose(config_name=config_name) | |
model = instantiate(cfg) | |
state_dict = torch.load( | |
checkpoint_path, | |
map_location=device, | |
) | |
if "state_dict" in state_dict: | |
state_dict = state_dict["state_dict"] | |
if any("generator" in k for k in state_dict): | |
state_dict = { | |
k.replace("generator.", ""): v | |
for k, v in state_dict.items() | |
if "generator." in k | |
} | |
model.load_state_dict(state_dict, strict=False) | |
model.eval() | |
model.to(device) | |
logger.info(f"Loaded model") | |
return model | |
def process_batch(files: list[Path], model) -> float: | |
wavs = [] | |
audio_lengths = [] | |
new_files = [] | |
max_length = total_time = 0 | |
for file in files: | |
try: | |
wav, sr = torchaudio.load( | |
str(file), backend="sox" if sys.platform == "linux" else "soundfile" | |
) # Need to install libsox-dev | |
except Exception as e: | |
logger.error(f"Error reading {file}: {e}") | |
continue | |
if wav.shape[0] > 1: | |
wav = wav.mean(dim=0, keepdim=True) | |
wav = torchaudio.functional.resample( | |
wav.cuda(), sr, model.spec_transform.sample_rate | |
)[0] | |
total_time += len(wav) / model.spec_transform.sample_rate | |
max_length = max(max_length, len(wav)) | |
wavs.append(wav) | |
audio_lengths.append(len(wav)) | |
new_files.append(file) | |
files = new_files | |
# Pad to max length | |
for i, wav in enumerate(wavs): | |
wavs[i] = torch.nn.functional.pad(wav, (0, max_length - len(wav)), "constant") | |
audios = torch.stack(wavs, dim=0)[:, None] | |
audio_lengths = torch.tensor(audio_lengths, device=model.device, dtype=torch.long) | |
# Calculate lengths | |
indices, feature_lengths = model.encode(audios, audio_lengths) | |
# Save to disk | |
outputs = indices.cpu().numpy() | |
for file, length, feature, audio_length in zip( | |
files, feature_lengths, outputs, audio_lengths | |
): | |
feature = feature[:, :length] | |
# (T,) | |
with open(file.with_suffix(".npy"), "wb") as f: | |
np.save(f, feature) | |
return total_time | |
def main( | |
folder: str, | |
num_workers: int, | |
config_name: str, | |
checkpoint_path: str, | |
batch_size: int, | |
filelist: Path, | |
): | |
if num_workers > 1 and WORLD_SIZE != num_workers: | |
assert WORLD_SIZE == 1, "You should either use SLURM or this launcher, not both" | |
logger.info(f"Spawning {num_workers} workers") | |
if torch.cuda.is_available(): | |
visible_devices = os.environ.get("CUDA_VISIBLE_DEVICES", None) | |
if visible_devices is None: | |
visible_devices = list(range(torch.cuda.device_count())) | |
else: | |
visible_devices = visible_devices.split(",") | |
else: | |
# Set to empty string to avoid using GPU | |
visible_devices = [""] | |
processes = [] | |
for i in range(num_workers): | |
env = os.environ.copy() | |
env["CUDA_VISIBLE_DEVICES"] = str(visible_devices[i % len(visible_devices)]) | |
env["SLURM_PROCID"] = str(i) | |
env["SLURM_NTASKS"] = str(num_workers) | |
processes.append( | |
sp.Popen( | |
[sys.executable] + sys.argv.copy(), | |
env=env, | |
) | |
) | |
for p in processes: | |
p.wait() | |
logger.info(f"All workers finished") | |
return | |
# This is a worker | |
logger.info(f"Starting worker") | |
if filelist: | |
files = [i[0] for i in load_filelist(filelist)] | |
else: | |
files = list_files(folder, AUDIO_EXTENSIONS, recursive=True, sort=False) | |
print(f"Found {len(files)} files") | |
files = [Path(f) for f in files if not Path(f).with_suffix(".npy").exists()] | |
total_files = len(files) | |
files = files[RANK::WORLD_SIZE] | |
logger.info(f"Processing {len(files)}/{total_files} files") | |
# Batch processing | |
total_time = 0 | |
begin_time = time.time() | |
processed_files = 0 | |
model = get_model(config_name, checkpoint_path) | |
for n_batch, idx in enumerate(range(0, len(files), batch_size)): | |
batch = files[idx : idx + batch_size] | |
batch_time = process_batch(batch, model) | |
total_time += batch_time | |
processed_files += len(batch) | |
if (n_batch + 1) % 10 == 0: | |
eta = ( | |
(time.time() - begin_time) | |
/ processed_files | |
* (len(files) - processed_files) | |
) | |
logger.info( | |
f"Processed {processed_files} files, {total_time / 3600:.2f} hours of audio, " | |
+ f"ETA: {timedelta(seconds=round(eta))}s" | |
) | |
logger.info( | |
f"Finished processing {len(files)} files, {total_time / 3600:.2f} hours of audio" | |
) | |
if __name__ == "__main__": | |
main() | |