ViPE / app.py
fittar's picture
Update app.py
f87e5d7
raw
history blame
1.64 kB
import gradio as gr
from transformers import GPT2LMHeadModel, GPT2Tokenizer
import torch
def vipe_generate(text, model, tokenizer,device,do_sample,top_k=100, epsilon_cutoff=.00005, temperature=1):
#mark the text with special tokens
text=[tokenizer.eos_token + i + tokenizer.eos_token for i in text]
batch=tokenizer(text, padding=True, return_tensors="pt")
input_ids = batch["input_ids"].to(device)
attention_mask = batch["attention_mask"].to(device)
#how many new tokens to generate at max
max_prompt_length=50
generated_ids = model.generate(input_ids=input_ids,attention_mask=attention_mask, max_new_tokens=max_prompt_length, do_sample=do_sample,top_k=top_k, epsilon_cutoff=epsilon_cutoff, temperature=temperature)
#return only the generated prompts
pred_caps = tokenizer.batch_decode(generated_ids[:, -(generated_ids.shape[1] - input_ids.shape[1]):], skip_special_tokens=True)
return pred_caps
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = GPT2LMHeadModel.from_pretrained('fittar/ViPE-M-CTX7')
model.to(device)
tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')
tokenizer.pad_token = tokenizer.eos_token
def vipe_generate(text):
result =generate(text,model,tokenizer,do_sample=True,device=device)
return result
examples = [
["Is string theory right?"],
["She felt like a flower in December"],
["2+2=4?"],
]
demo = gr.Interface(
fn=vipe_generate,
inputs=gr.inputs.Textbox(lines=5, label="Arbitrary Input Text"),
outputs=gr.outputs.Textbox(label="Generated Prompt for Visualizations"),
examples=examples
)
demo.launch()