import gradio as gr from transformers import GPT2LMHeadModel, GPT2Tokenizer def generate(text, model, tokenizer,device,do_sample,top_k=100, epsilon_cutoff=.00005, temperature=1): #mark the text with special tokens text=[tokenizer.eos_token + i + tokenizer.eos_token for i in text] batch=tokenizer(text, padding=True, return_tensors="pt") input_ids = batch["input_ids"].to(device) attention_mask = batch["attention_mask"].to(device) #how many new tokens to generate at max max_prompt_length=50 generated_ids = model.generate(input_ids=input_ids,attention_mask=attention_mask, max_new_tokens=max_prompt_length, do_sample=do_sample,top_k=top_k, epsilon_cutoff=epsilon_cutoff, temperature=temperature) #return only the generated prompts pred_caps = tokenizer.batch_decode(generated_ids[:, -(generated_ids.shape[1] - input_ids.shape[1]):], skip_special_tokens=True) return pred_caps device = 'cuda' if torch.cuda.is_available() else 'cpu' model = GPT2LMHeadModel.from_pretrained('fittar/ViPE-M-CTX7') model.to(device) tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium') tokenizer.pad_token = tokenizer.eos_token def generate(text): result = gprompts=generate(text,model,tokenizer,do_sample=True,device=device) return result examples = [ ["Is string theory right?"], ["She felt like a flower in December"], ["2+2=4?"], ] demo = gr.Interface( fn=generate, inputs=gr.inputs.Textbox(lines=5, label="Input Text"), outputs=gr.outputs.Textbox(label="Generated Text"), examples=examples ) demo.launch()