import gradio as gr from transformers import GPT2LMHeadModel, GPT2Tokenizer import torch def vipe_generate(text, model, tokenizer,device,do_sample,top_k=100, epsilon_cutoff=.00005, temperature=1): #mark the text with special tokens text=[tokenizer.eos_token + i + tokenizer.eos_token for i in text] batch=tokenizer(text, padding=True, return_tensors="pt") input_ids = batch["input_ids"].to(device) attention_mask = batch["attention_mask"].to(device) #how many new tokens to generate at max max_prompt_length=50 generated_ids = model.generate(input_ids=input_ids,attention_mask=attention_mask, max_new_tokens=max_prompt_length, do_sample=do_sample,top_k=top_k, epsilon_cutoff=epsilon_cutoff, temperature=temperature) #return only the generated prompts pred_caps = tokenizer.batch_decode(generated_ids[:, -(generated_ids.shape[1] - input_ids.shape[1]):], skip_special_tokens=True) return pred_caps[0] device = 'cuda' if torch.cuda.is_available() else 'cpu' model = GPT2LMHeadModel.from_pretrained('fittar/ViPE-M-CTX7') model.to(device) tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium') tokenizer.pad_token = tokenizer.eos_token def generate(text): result =vipe_generate([text],model,tokenizer,do_sample=True,device=device) return result examples = [ ["brave, fantasy"], ["She felt like a flower in December"], ["2+2=4? hmm.."] ] title = "ViPE: Visualize Pretty-much Everything" description = 'ViPE is the first automated model for translating any arbitrary piece of text into a visualizable prompt. It helps any text-to-image model in figurative or non-lexical language visualizations. To learn more about the model, [click here](https://huggingface.co/fittar/ViPE-M-CTX7).
' txt = gr.Textbox(lines=1, label="Arbitrary Input Text", placeholder="Initial text") out = gr.Textbox(lines=4, label="Generated Prompt for Visualizations") demo = gr.Interface( fn =generate, inputs=txt, outputs=out, examples=examples, title=title, description=description, theme="default", cache_examples="never" ) demo.launch(enable_queue=True, debug=True)