Spaces:
Runtime error
Runtime error
File size: 2,456 Bytes
e5e6441 3815e0a e5e6441 3815e0a d999c07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
#import os
# temp_dir = './temp/'
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# os.environ['TMPDIR'] = temp_dir
# import shutil
import gradio as gr
from summagery_pipline import Summagery
# if os.path.exists(temp_dir):
# try:
# shutil.rmtree(temp_dir)
# print(f"The directory at {temp_dir} has been removed successfully along with its contents.")
# except OSError as e:
# print(f"Error: {temp_dir} - {e}")
# os.makedirs(temp_dir, exist_ok=True)
def generate(text, batch_size, model_type, abstractness):
model = Summagery(model_type,batch_size=int(batch_size),abstractness=abstractness)
images=model.ignite(text)
return images
with gr.Blocks(theme=gr.themes.Soft(),) as demo:
gr.Markdown(
"""
<h1 style="text-align:center;">Welcome to Summagery: Document Summarization through Images</h1>
<h3 style="text-align:center;">Summarize long and short documents on any topic as images</h3>
<p style="text-align:left;">1. <b>Document:</b> Enter the text of the document you want to summarize.</p>
<p style="text-align:left;">2. <b>Batch Size:</b> Adjust the batch size for processing very long documents (e.g., 500 pages)</p>
<p style="text-align:left;">3. <b>T5_Model_Checkpoint:</b> Choose the model checkpoint (e.g., "t5-large", "t5-base", "t5-small"). Smaller models require less memory.</p>
<p style="text-align:left;">4. <b>Abstractness:</b> Slide to select the level of abstractness of your document, vary this attribute to explore different images.</p>
<p style="text-align:left;"> <b>For more details:</b> check out my <a href="https://fittar.me/post/summagary/" target="_blank">blog post</a> for a comprehensive explanation of the Summagery project.</p>
""")
inputs = [
gr.Textbox(label="Document", lines=10,interactive=True),
gr.Number(label="Batch Size", value=5),
gr.Dropdown(label="T5_Model_Checkpoint", choices=["t5-large", "t5-base", "t5-small"], value='t5-large'),
gr.Slider(label="Abstractness", minimum=0, maximum=1, value=.2)
]
outputs = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery"
, columns=[2], rows=[2], object_fit="contain", height="auto")
clear = gr.ClearButton([inputs[0]])
greet_btn = gr.Button("Submit")
greet_btn.click(fn=generate, inputs=inputs, outputs=outputs, api_name="Summagery")
demo.launch() |