Spaces:
Sleeping
Sleeping
import gradio as gr | |
import gensim | |
model_g = gensim.models.KeyedVectors.load_word2vec_format('v_glove_300d_2.0' , binary=True) | |
#retrieve the most similar words | |
def generate(word): | |
result= model_g.most_similar(word,topn=10) | |
return result | |
examples = [ | |
["sad"], | |
["together"], | |
["lake"] | |
] | |
title = "Visually Grounded Embeddings" | |
description = 'Get the top 10 nearest neighbors with cosine similarities from a visually grounded word embedding model described in [this paper](https://arxiv.org/abs/2206.08823). These embeddings have been shown to strongly correlate with human judgment on [word similarity benchmarks](https://github.com/vecto-ai/word-benchmarks).<br>' | |
txt = gr.Textbox(lines=1, label="Query word", placeholder="muffin") | |
out = gr.Textbox(lines=4, label="top 10 nearest neighbors") | |
demo = gr.Interface( | |
fn =generate, | |
inputs=txt, | |
outputs=out, | |
examples=examples, | |
title=title, | |
description=description, | |
theme="default", | |
cache_examples="never" | |
) | |
demo.launch(enable_queue=True, debug=True) |