fittar commited on
Commit
f1ddc13
·
1 Parent(s): 7086cea

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -0
app.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ import gensim
4
+
5
+ model_g = gensim.models.KeyedVectors.load_word2vec_format('./v_glove_1024_2.0' , binary=True)
6
+
7
+ #retrieve the most similar words
8
+
9
+ def generate(text):
10
+ result= model_g.most_similar('together',topn=10)
11
+ return result
12
+
13
+
14
+ examples = [
15
+ ["sad"],
16
+ ["together"],
17
+ ["lake"]
18
+ ]
19
+
20
+ title = "Visually Grounded embeddings"
21
+ description = 'Get the top 10 nearest neighbors from a visually grounded word embedding model described in [this paper](https://arxiv.org/abs/2206.08823).<br>'
22
+ txt = gr.Textbox(lines=1, label="Query word", placeholder="muffin")
23
+ out = gr.Textbox(lines=4, label="top 10 nearest neighbors")
24
+
25
+ demo = gr.Interface(
26
+ fn =generate,
27
+ inputs=txt,
28
+ outputs=out,
29
+ examples=examples,
30
+ title=title,
31
+ description=description,
32
+ theme="default",
33
+ cache_examples="never"
34
+ )
35
+
36
+ demo.launch(enable_queue=True, debug=True)