import gradio as gr import gensim model_g = gensim.models.KeyedVectors.load_word2vec_format('v_glove_300d_2.0' , binary=True) #retrieve the most similar words def generate(word): result= model_g.most_similar(word,topn=10) return result examples = [ ["sad"], ["together"], ["lake"] ] title = "Visually Grounded Embeddings" description = 'Get the top 10 nearest neighbors with cosine similarities from a visually grounded word embedding model described in [this paper](https://arxiv.org/abs/2206.08823). These embeddings have been shown to strongly correlate with human judgment on [word similarity benchmarks](https://github.com/vecto-ai/word-benchmarks).
' txt = gr.Textbox(lines=1, label="Query word", placeholder="muffin") out = gr.Textbox(lines=4, label="top 10 nearest neighbors") demo = gr.Interface( fn =generate, inputs=txt, outputs=out, examples=examples, title=title, description=description, theme="default", cache_examples="never" ) demo.launch(enable_queue=True, debug=True)