Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import AutoencoderKL, UNet2DConditionModel, StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
import utils
|
6 |
+
import datetime
|
7 |
+
import time
|
8 |
+
import psutil
|
9 |
+
|
10 |
+
start_time = time.time()
|
11 |
+
is_colab = utils.is_google_colab()
|
12 |
+
|
13 |
+
class Model:
|
14 |
+
def __init__(self, name, path="", prefix=""):
|
15 |
+
self.name = name
|
16 |
+
self.path = path
|
17 |
+
self.prefix = prefix
|
18 |
+
self.pipe_t2i = None
|
19 |
+
self.pipe_i2i = None
|
20 |
+
|
21 |
+
models = [
|
22 |
+
Model("Cool Japanese Diffusion", "alfredplpl/cool-japan-diffusion-for-learning-2-0", "Cool Japanese Diffusion"),
|
23 |
+
]
|
24 |
+
|
25 |
+
|
26 |
+
scheduler = DPMSolverMultistepScheduler(
|
27 |
+
beta_start=0.00085,
|
28 |
+
beta_end=0.012,
|
29 |
+
beta_schedule="scaled_linear",
|
30 |
+
num_train_timesteps=1000,
|
31 |
+
trained_betas=None,
|
32 |
+
predict_epsilon=True,
|
33 |
+
thresholding=False,
|
34 |
+
algorithm_type="dpmsolver++",
|
35 |
+
solver_type="midpoint",
|
36 |
+
lower_order_final=True,
|
37 |
+
)
|
38 |
+
|
39 |
+
custom_model = None
|
40 |
+
|
41 |
+
last_mode = "txt2img"
|
42 |
+
current_model = models[0]
|
43 |
+
current_model_path = current_model.path
|
44 |
+
|
45 |
+
else:
|
46 |
+
print(f"{datetime.datetime.now()} Downloading vae...")
|
47 |
+
vae = AutoencoderKL.from_pretrained(current_model.path, subfolder="vae")
|
48 |
+
for model in models:
|
49 |
+
try:
|
50 |
+
print(f"{datetime.datetime.now()} Downloading {model.name} model...")
|
51 |
+
unet = UNet2DConditionModel.from_pretrained(model.path, subfolder="unet")
|
52 |
+
model.pipe_t2i = StableDiffusionPipeline.from_pretrained(model.path, unet=unet, vae=vae, scheduler=scheduler)
|
53 |
+
model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model.path, unet=unet, vae=vae, scheduler=scheduler)
|
54 |
+
except Exception as e:
|
55 |
+
print(f"{datetime.datetime.now()} Failed to load model " + model.name + ": " + str(e))
|
56 |
+
models.remove(model)
|
57 |
+
pipe = models[0].pipe_t2i
|
58 |
+
|
59 |
+
if torch.cuda.is_available():
|
60 |
+
pipe = pipe.to("cuda")
|
61 |
+
|
62 |
+
device = "Running on GPU π₯" if torch.cuda.is_available() else "Running on CPU π₯Ά"
|
63 |
+
|
64 |
+
def error_str(error, title="Error"):
|
65 |
+
return f"""#### {title}
|
66 |
+
{error}""" if error else ""
|
67 |
+
|
68 |
+
def custom_model_changed(path):
|
69 |
+
models[0].path = path
|
70 |
+
global current_model
|
71 |
+
current_model = models[0]
|
72 |
+
|
73 |
+
def on_model_change(model_name):
|
74 |
+
|
75 |
+
prefix = "γγγ³γγγε
₯ε" + next((m.prefix for m in models if m.name == model_name), None) + "\" is prefixed automatically" if model_name != models[0].name else "Don't forget to use the custom model prefix in the prompt!"
|
76 |
+
|
77 |
+
return gr.update(visible = model_name == models[0].name), gr.update(placeholder=prefix)
|
78 |
+
|
79 |
+
def inference(model_name, prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""):
|
80 |
+
|
81 |
+
print(psutil.virtual_memory())
|
82 |
+
global current_model
|
83 |
+
for model in models:
|
84 |
+
if model.name == model_name:
|
85 |
+
current_model = model
|
86 |
+
model_path = current_model.path
|
87 |
+
|
88 |
+
generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
|
89 |
+
|
90 |
+
try:
|
91 |
+
if img is not None:
|
92 |
+
return img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator), None
|
93 |
+
else:
|
94 |
+
return txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator), None
|
95 |
+
except Exception as e:
|
96 |
+
return None, error_str(e)
|
97 |
+
|
98 |
+
def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator):
|
99 |
+
|
100 |
+
print(f"{datetime.datetime.now()} txt_to_img, model: {current_model.name}")
|
101 |
+
|
102 |
+
global last_mode
|
103 |
+
global pipe
|
104 |
+
global current_model_path
|
105 |
+
if model_path != current_model_path or last_mode != "txt2img":
|
106 |
+
current_model_path = model_path
|
107 |
+
|
108 |
+
pipe = pipe.to("cpu")
|
109 |
+
pipe = current_model.pipe_t2i
|
110 |
+
|
111 |
+
if torch.cuda.is_available():
|
112 |
+
pipe = pipe.to("cuda")
|
113 |
+
last_mode = "txt2img"
|
114 |
+
|
115 |
+
prompt = current_model.prefix + prompt
|
116 |
+
result = pipe(
|
117 |
+
prompt,
|
118 |
+
negative_prompt = neg_prompt,
|
119 |
+
# num_images_per_prompt=n_images,
|
120 |
+
num_inference_steps = int(steps),
|
121 |
+
guidance_scale = guidance,
|
122 |
+
width = width,
|
123 |
+
height = height,
|
124 |
+
generator = generator)
|
125 |
+
|
126 |
+
return replace_nsfw_images(result)
|
127 |
+
|
128 |
+
def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator):
|
129 |
+
|
130 |
+
print(f"{datetime.datetime.now()} img_to_img, model: {model_path}")
|
131 |
+
|
132 |
+
global last_mode
|
133 |
+
global pipe
|
134 |
+
global current_model_path
|
135 |
+
if model_path != current_model_path or last_mode != "img2img":
|
136 |
+
current_model_path = model_path
|
137 |
+
|
138 |
+
if current_model == custom_model:
|
139 |
+
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(current_model_path, scheduler=scheduler, safety_checker=lambda images, clip_input: (images, False))
|
140 |
+
else:
|
141 |
+
pipe = pipe.to("cpu")
|
142 |
+
pipe = current_model.pipe_i2i
|
143 |
+
|
144 |
+
if torch.cuda.is_available():
|
145 |
+
pipe = pipe.to("cuda")
|
146 |
+
last_mode = "img2img"
|
147 |
+
|
148 |
+
prompt = current_model.prefix + prompt
|
149 |
+
ratio = min(height / img.height, width / img.width)
|
150 |
+
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
|
151 |
+
result = pipe(
|
152 |
+
prompt,
|
153 |
+
negative_prompt = neg_prompt,
|
154 |
+
# num_images_per_prompt=n_images,
|
155 |
+
init_image = img,
|
156 |
+
num_inference_steps = int(steps),
|
157 |
+
strength = strength,
|
158 |
+
guidance_scale = guidance,
|
159 |
+
width = width,
|
160 |
+
height = height,
|
161 |
+
generator = generator)
|
162 |
+
|
163 |
+
return replace_nsfw_images(result)
|
164 |
+
|
165 |
+
def replace_nsfw_images(results):
|
166 |
+
|
167 |
+
for i in range(len(results.images)):
|
168 |
+
if results.nsfw_content_detected[i]:
|
169 |
+
results.images[i] = Image.open("nsfw.png")
|
170 |
+
return results.images[0]
|
171 |
+
|
172 |
+
css = """.finetuned-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.finetuned-diffusion-div div h1{font-weight:900;margin-bottom:7px}.finetuned-diffusion-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
|
173 |
+
"""
|
174 |
+
with gr.Blocks(css=css) as demo:
|
175 |
+
with gr.Row():
|
176 |
+
|
177 |
+
with gr.Column(scale=55):
|
178 |
+
with gr.Group():
|
179 |
+
model_name = gr.Dropdown(label="Model", choices=[m.name for m in models], value=current_model.name)
|
180 |
+
with gr.Box(visible=False) as custom_model_group:
|
181 |
+
custom_model_path = gr.Textbox(label="Custom model path", placeholder="Path to model, e.g. nitrosocke/Arcane-Diffusion", interactive=True)
|
182 |
+
gr.HTML("<div><font size='2'>Custom models have to be downloaded first, so give it some time.</font></div>")
|
183 |
+
|
184 |
+
with gr.Row():
|
185 |
+
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="Enter prompt. Style applied automatically").style(container=False)
|
186 |
+
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
|
187 |
+
|
188 |
+
|
189 |
+
image_out = gr.Image(height=512)
|
190 |
+
# gallery = gr.Gallery(
|
191 |
+
# label="Generated images", show_label=False, elem_id="gallery"
|
192 |
+
# ).style(grid=[1], height="auto")
|
193 |
+
error_output = gr.Markdown()
|
194 |
+
|
195 |
+
with gr.Column(scale=45):
|
196 |
+
with gr.Tab("Options"):
|
197 |
+
with gr.Group():
|
198 |
+
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="γγ¬γγ£γγγγ³γγγε
₯ε")
|
199 |
+
|
200 |
+
# n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=4, step=1)
|
201 |
+
|
202 |
+
with gr.Row():
|
203 |
+
guidance = gr.Slider(label="CFG Scale", value=7.5, maximum=15)
|
204 |
+
steps = gr.Slider(label="Steps", value=25, minimum=2, maximum=75, step=1)
|
205 |
+
|
206 |
+
with gr.Row():
|
207 |
+
width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8)
|
208 |
+
height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8)
|
209 |
+
|
210 |
+
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
|
211 |
+
|
212 |
+
with gr.Tab("Image to image"):
|
213 |
+
with gr.Group():
|
214 |
+
image = gr.Image(label="Image", height=256, tool="editor", type="pil")
|
215 |
+
strength = gr.Slider(label="strength", minimum=0, maximum=1, step=0.01, value=0.5)
|
216 |
+
|
217 |
+
inputs = [model_name, prompt, guidance, steps, width, height, seed, image, strength, neg_prompt]
|
218 |
+
outputs = [image_out, error_output]
|
219 |
+
prompt.submit(inference, inputs=inputs, outputs=outputs)
|
220 |
+
generate.click(inference, inputs=inputs, outputs=outputs)
|
221 |
+
|
222 |
+
ex = gr.Examples([
|
223 |
+
[models[0].name, "iron man", 7.5, 50],
|
224 |
+
|
225 |
+
], inputs=[model_name, prompt, guidance, steps, seed], outputs=outputs, fn=inference, cache_examples=False)
|
226 |
+
|
227 |
+
gr.HTML("""
|
228 |
+
<div style="border-top: 1px solid #303030;">
|
229 |
+
<br>
|
230 |
+
<p>Model by TopdeckingLands.</p>
|
231 |
+
</div>
|
232 |
+
""")
|
233 |
+
|
234 |
+
print(f"Space built in {time.time() - start_time:.2f} seconds")
|
235 |
+
|
236 |
+
demo.queue(concurrency_count=1)
|
237 |
+
demo.launch()
|