File size: 11,535 Bytes
b582ef0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
from typing import Dict
import numpy as np
from omegaconf import DictConfig, ListConfig
import torch
from torch.utils.data import Dataset
from pathlib import Path
import json
from PIL import Image
from torchvision import transforms
from einops import rearrange
from typing import Literal, Tuple, Optional, Any
import cv2
import random

import json
import os, sys
import math

from glob import glob

import PIL.Image
from .normal_utils import trans_normal, normal2img, img2normal
import pdb


import cv2
import numpy as np

def add_margin(pil_img, color=0, size=256):
    width, height = pil_img.size
    result = Image.new(pil_img.mode, (size, size), color)
    result.paste(pil_img, ((size - width) // 2, (size - height) // 2))
    return result

def scale_and_place_object(image, scale_factor):
    assert np.shape(image)[-1]==4  # RGBA

    # Extract the alpha channel (transparency) and the object (RGB channels)
    alpha_channel = image[:, :, 3]

    # Find the bounding box coordinates of the object
    coords = cv2.findNonZero(alpha_channel)
    x, y, width, height = cv2.boundingRect(coords)

    # Calculate the scale factor for resizing
    original_height, original_width = image.shape[:2]

    if width > height:
        size = width
        original_size = original_width
    else:
        size = height
        original_size = original_height

    scale_factor = min(scale_factor, size / (original_size+0.0))

    new_size = scale_factor * original_size
    scale_factor = new_size / size

    # Calculate the new size based on the scale factor
    new_width = int(width * scale_factor)
    new_height = int(height * scale_factor)

    center_x = original_width // 2
    center_y = original_height // 2

    paste_x = center_x - (new_width // 2)
    paste_y = center_y - (new_height // 2)

    # Resize the object (RGB channels) to the new size
    rescaled_object = cv2.resize(image[y:y+height, x:x+width], (new_width, new_height))

    # Create a new RGBA image with the resized image
    new_image = np.zeros((original_height, original_width, 4), dtype=np.uint8)

    new_image[paste_y:paste_y + new_height, paste_x:paste_x + new_width] = rescaled_object

    return new_image

class SingleImageDataset(Dataset):
    def __init__(self,
        root_dir: str,
        num_views: int,
        img_wh: Tuple[int, int],
        bg_color: str,
        crop_size: int = 224,
        num_validation_samples: Optional[int] = None,
        filepaths: Optional[list] = None,
        cond_type: Optional[str] = None
        ) -> None:
        """Create a dataset from a folder of images.
        If you pass in a root directory it will be searched for images
        ending in ext (ext can be a list)
        """
        self.root_dir = Path(root_dir)
        self.num_views = num_views
        self.img_wh = img_wh
        self.crop_size = crop_size
        self.bg_color = bg_color
        self.cond_type = cond_type

        if self.num_views == 4:
            self.view_types  = ['front', 'right', 'back', 'left']
        elif self.num_views == 5:
            self.view_types  = ['front', 'front_right', 'right', 'back', 'left']
        elif self.num_views == 6:
            self.view_types  = ['front', 'front_right', 'right', 'back', 'left', 'front_left']
        
        self.fix_cam_pose_dir = "./mvdiffusion/data/fixed_poses/nine_views"
        
        self.fix_cam_poses = self.load_fixed_poses()  # world2cam matrix

        if filepaths is None:
            # Get a list of all files in the directory
            file_list = os.listdir(self.root_dir)
        else:
            file_list = filepaths

        if self.cond_type == None:
            # Filter the files that end with .png or .jpg
            self.file_list = [file for file in file_list if file.endswith(('.png', '.jpg'))]
            self.cond_dirs = None
        else:
            self.file_list = []
            self.cond_dirs = []
            for scene in file_list:
                self.file_list.append(os.path.join(scene, f"{scene}.png"))
                if self.cond_type == 'normals':
                    self.cond_dirs.append(os.path.join(self.root_dir, scene, 'outs'))
                else:
                    self.cond_dirs.append(os.path.join(self.root_dir, scene))

        # load all images
        self.all_images = []
        self.all_alphas = []
        bg_color = self.get_bg_color()
        for file in self.file_list:
            image, alpha = self.load_image(os.path.join(self.root_dir, file), bg_color, return_type='pt')
            self.all_images.append(image)
            self.all_alphas.append(alpha)

        self.all_images = self.all_images[:num_validation_samples]
        self.all_alphas = self.all_alphas[:num_validation_samples]


    def __len__(self):
        return len(self.all_images)

    def load_fixed_poses(self):
        poses = {}
        for face in self.view_types:
            RT = np.loadtxt(os.path.join(self.fix_cam_pose_dir,'%03d_%s_RT.txt'%(0, face)))
            poses[face] = RT

        return poses
        
    def cartesian_to_spherical(self, xyz):
        ptsnew = np.hstack((xyz, np.zeros(xyz.shape)))
        xy = xyz[:,0]**2 + xyz[:,1]**2
        z = np.sqrt(xy + xyz[:,2]**2)
        theta = np.arctan2(np.sqrt(xy), xyz[:,2]) # for elevation angle defined from Z-axis down
        #ptsnew[:,4] = np.arctan2(xyz[:,2], np.sqrt(xy)) # for elevation angle defined from XY-plane up
        azimuth = np.arctan2(xyz[:,1], xyz[:,0])
        return np.array([theta, azimuth, z])

    def get_T(self, target_RT, cond_RT):
        R, T = target_RT[:3, :3], target_RT[:, -1]
        T_target = -R.T @ T # change to cam2world

        R, T = cond_RT[:3, :3], cond_RT[:, -1]
        T_cond = -R.T @ T

        theta_cond, azimuth_cond, z_cond = self.cartesian_to_spherical(T_cond[None, :])
        theta_target, azimuth_target, z_target = self.cartesian_to_spherical(T_target[None, :])
        
        d_theta = theta_target - theta_cond
        d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi)
        d_z = z_target - z_cond
        
        # d_T = torch.tensor([d_theta.item(), math.sin(d_azimuth.item()), math.cos(d_azimuth.item()), d_z.item()])
        return d_theta, d_azimuth

    def get_bg_color(self):
        if self.bg_color == 'white':
            bg_color = np.array([1., 1., 1.], dtype=np.float32)
        elif self.bg_color == 'black':
            bg_color = np.array([0., 0., 0.], dtype=np.float32)
        elif self.bg_color == 'gray':
            bg_color = np.array([0.5, 0.5, 0.5], dtype=np.float32)
        elif self.bg_color == 'random':
            bg_color = np.random.rand(3)
        elif isinstance(self.bg_color, float):
            bg_color = np.array([self.bg_color] * 3, dtype=np.float32)
        else:
            raise NotImplementedError
        return bg_color
    
    
    def load_image(self, img_path, bg_color, return_type='np'):
        # pil always returns uint8
        image_input = Image.open(img_path)
        image_size = self.img_wh[0]

        if self.crop_size!=-1:
            alpha_np = np.asarray(image_input)[:, :, 3]
            coords = np.stack(np.nonzero(alpha_np), 1)[:, (1, 0)]
            min_x, min_y = np.min(coords, 0)
            max_x, max_y = np.max(coords, 0)
            ref_img_ = image_input.crop((min_x, min_y, max_x, max_y))
            h, w = ref_img_.height, ref_img_.width
            scale = self.crop_size / max(h, w)
            h_, w_ = int(scale * h), int(scale * w)
            ref_img_ = ref_img_.resize((w_, h_), resample=Image.BICUBIC)
            image_input = add_margin(ref_img_, size=image_size)
        else:
            image_input = add_margin(image_input, size=max(image_input.height, image_input.width))
            image_input = image_input.resize((image_size, image_size), resample=Image.BICUBIC)

        # img = scale_and_place_object(img, self.scale_ratio)
        img = np.array(image_input)
        img = img.astype(np.float32) / 255. # [0, 1]
        assert img.shape[-1] == 4 # RGBA

        alpha = img[...,3:4]
        img = img[...,:3] * alpha + bg_color * (1 - alpha)

        if return_type == "np":
            pass
        elif return_type == "pt":
            img = torch.from_numpy(img)
            alpha = torch.from_numpy(alpha)
        else:
            raise NotImplementedError
        
        return img, alpha
    
    def load_conds(self, directory):
        assert self.crop_size == -1
        image_size = self.img_wh[0]
        conds = []
        for view in self.view_types:
            cond_file = f"{self.cond_type}_000_{view}.png"
            image_input = Image.open(os.path.join(directory, cond_file))
            image_input = image_input.resize((image_size, image_size), resample=Image.BICUBIC)
            image_input = np.array(image_input)[:, :, :3] / 255.
            conds.append(image_input)

        conds = np.stack(conds, axis=0)
        conds = torch.from_numpy(conds).permute(0, 3, 1, 2)  # B, 3, H, W
        return conds

    def __len__(self):
        return len(self.all_images)

    def __getitem__(self, index):

        image = self.all_images[index%len(self.all_images)]
        alpha = self.all_alphas[index%len(self.all_images)]
        filename = self.file_list[index%len(self.all_images)].replace(".png", "")

        if self.cond_type != None:
            conds = self.load_conds(self.cond_dirs[index%len(self.all_images)])
        else:
            conds = None

        cond_w2c = self.fix_cam_poses['front']

        tgt_w2cs = [self.fix_cam_poses[view] for view in self.view_types]

        elevations = []
        azimuths = []

        img_tensors_in = [
            image.permute(2, 0, 1)
        ] * self.num_views

        alpha_tensors_in = [
            alpha.permute(2, 0, 1)
        ] * self.num_views

        for view, tgt_w2c in zip(self.view_types, tgt_w2cs):
            # evelations, azimuths
            elevation, azimuth = self.get_T(tgt_w2c, cond_w2c)
            elevations.append(elevation)
            azimuths.append(azimuth)

        img_tensors_in = torch.stack(img_tensors_in, dim=0).float() # (Nv, 3, H, W)
        alpha_tensors_in = torch.stack(alpha_tensors_in, dim=0).float() # (Nv, 3, H, W)

        elevations = torch.as_tensor(elevations).float().squeeze(1)
        azimuths = torch.as_tensor(azimuths).float().squeeze(1)
        elevations_cond = torch.as_tensor([0] * self.num_views).float()

        normal_class = torch.tensor([1, 0]).float()
        normal_task_embeddings = torch.stack([normal_class]*self.num_views, dim=0)  # (Nv, 2)
        color_class = torch.tensor([0, 1]).float()
        color_task_embeddings = torch.stack([color_class]*self.num_views, dim=0)  # (Nv, 2)

        camera_embeddings = torch.stack([elevations_cond, elevations, azimuths], dim=-1) # (Nv, 3)

        out =  {
            'elevations_cond': elevations_cond,
            'elevations_cond_deg': torch.rad2deg(elevations_cond),
            'elevations': elevations,
            'azimuths': azimuths,
            'elevations_deg': torch.rad2deg(elevations),
            'azimuths_deg': torch.rad2deg(azimuths),
            'imgs_in': img_tensors_in,
            'alphas': alpha_tensors_in,
            'camera_embeddings': camera_embeddings,
            'normal_task_embeddings': normal_task_embeddings,
            'color_task_embeddings': color_task_embeddings,
            'filename': filename,
        }

        if conds is not None:
            out['conds'] = conds

        return out