Spaces:
Running
on
L4
Running
on
L4
File size: 10,947 Bytes
4bbe787 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
from typing import Dict
import numpy as np
from omegaconf import DictConfig, ListConfig
import torch
from torch.utils.data import Dataset
from pathlib import Path
import json
from PIL import Image
from torchvision import transforms
from einops import rearrange
from typing import Literal, Tuple, Optional, Any
import cv2
import random
import json
import os, sys
import math
from glob import glob
import PIL.Image
from .normal_utils import trans_normal, normal2img, img2normal
import pdb
import cv2
import numpy as np
def add_margin(pil_img, color=0, size=256):
width, height = pil_img.size
result = Image.new(pil_img.mode, (size, size), color)
result.paste(pil_img, ((size - width) // 2, (size - height) // 2))
return result
def scale_and_place_object(image, scale_factor):
assert np.shape(image)[-1]==4 # RGBA
# Extract the alpha channel (transparency) and the object (RGB channels)
alpha_channel = image[:, :, 3]
# Find the bounding box coordinates of the object
coords = cv2.findNonZero(alpha_channel)
x, y, width, height = cv2.boundingRect(coords)
# Calculate the scale factor for resizing
original_height, original_width = image.shape[:2]
if width > height:
size = width
original_size = original_width
else:
size = height
original_size = original_height
scale_factor = min(scale_factor, size / (original_size+0.0))
new_size = scale_factor * original_size
scale_factor = new_size / size
# Calculate the new size based on the scale factor
new_width = int(width * scale_factor)
new_height = int(height * scale_factor)
center_x = original_width // 2
center_y = original_height // 2
paste_x = center_x - (new_width // 2)
paste_y = center_y - (new_height // 2)
# Resize the object (RGB channels) to the new size
rescaled_object = cv2.resize(image[y:y+height, x:x+width], (new_width, new_height))
# Create a new RGBA image with the resized image
new_image = np.zeros((original_height, original_width, 4), dtype=np.uint8)
new_image[paste_y:paste_y + new_height, paste_x:paste_x + new_width] = rescaled_object
return new_image
class InferenceImageDataset(Dataset):
def __init__(self,
root_dir: str,
num_views: int,
img_wh: Tuple[int, int],
bg_color: str,
crop_size: int = 224,
single_image: Optional[PIL.Image.Image] = None,
num_validation_samples: Optional[int] = None,
filepaths: Optional[list] = None,
cam_types: Optional[list] = None,
cond_type: Optional[str] = None,
load_cam_type: Optional[bool] = True
) -> None:
"""Create a dataset from a folder of images.
If you pass in a root directory it will be searched for images
ending in ext (ext can be a list)
"""
self.root_dir = root_dir
self.num_views = num_views
self.img_wh = img_wh
self.crop_size = crop_size
self.bg_color = bg_color
self.cond_type = cond_type
self.load_cam_type = load_cam_type
self.cam_types = cam_types
if self.num_views == 4:
self.view_types = ['front', 'right', 'back', 'left']
elif self.num_views == 5:
self.view_types = ['front', 'front_right', 'right', 'back', 'left']
elif self.num_views == 6:
self.view_types = ['front', 'front_right', 'right', 'back', 'left', 'front_left']
self.fix_cam_pose_dir = "./mvdiffusion/data/fixed_poses/nine_views"
self.fix_cam_poses = self.load_fixed_poses() # world2cam matrix
if filepaths is None:
# Get a list of all files in the directory
file_list = os.listdir(self.root_dir)
self.cam_types = ['ortho'] * len(file_list) + ['persp']* len(file_list)
file_list = file_list * 2
else:
file_list = filepaths
print(filepaths, root_dir)
# Filter the files that end with .png or .jpg
self.file_list = [file for file in file_list]
self.bg_color = self.get_bg_color()
def __len__(self):
return len(self.file_list)
def load_fixed_poses(self):
poses = {}
for face in self.view_types:
RT = np.loadtxt(os.path.join(self.fix_cam_pose_dir,'%03d_%s_RT.txt'%(0, face)))
poses[face] = RT
return poses
def cartesian_to_spherical(self, xyz):
ptsnew = np.hstack((xyz, np.zeros(xyz.shape)))
xy = xyz[:,0]**2 + xyz[:,1]**2
z = np.sqrt(xy + xyz[:,2]**2)
theta = np.arctan2(np.sqrt(xy), xyz[:,2]) # for elevation angle defined from Z-axis down
#ptsnew[:,4] = np.arctan2(xyz[:,2], np.sqrt(xy)) # for elevation angle defined from XY-plane up
azimuth = np.arctan2(xyz[:,1], xyz[:,0])
return np.array([theta, azimuth, z])
def get_T(self, target_RT, cond_RT):
R, T = target_RT[:3, :3], target_RT[:, -1]
T_target = -R.T @ T # change to cam2world
R, T = cond_RT[:3, :3], cond_RT[:, -1]
T_cond = -R.T @ T
theta_cond, azimuth_cond, z_cond = self.cartesian_to_spherical(T_cond[None, :])
theta_target, azimuth_target, z_target = self.cartesian_to_spherical(T_target[None, :])
d_theta = theta_target - theta_cond
d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi)
d_z = z_target - z_cond
# d_T = torch.tensor([d_theta.item(), math.sin(d_azimuth.item()), math.cos(d_azimuth.item()), d_z.item()])
return d_theta, d_azimuth
def get_bg_color(self):
if self.bg_color == 'white':
bg_color = np.array([1., 1., 1.], dtype=np.float32)
elif self.bg_color == 'black':
bg_color = np.array([0., 0., 0.], dtype=np.float32)
elif self.bg_color == 'gray':
bg_color = np.array([0.5, 0.5, 0.5], dtype=np.float32)
elif self.bg_color == 'random':
bg_color = np.random.rand(3)
elif isinstance(self.bg_color, float):
bg_color = np.array([self.bg_color] * 3, dtype=np.float32)
else:
raise NotImplementedError
return bg_color
def load_image(self, img_path, bg_color, return_type='pt', Imagefile=None):
# pil always returns uint8
if Imagefile is None:
image_input = Image.open(img_path)
else:
image_input = Imagefile
image_size = self.img_wh[0]
# if self.crop_size!=-1:
# alpha_np = np.asarray(image_input)[:, :, 3]
# coords = np.stack(np.nonzero(alpha_np), 1)[:, (1, 0)]
# min_x, min_y = np.min(coords, 0)
# max_x, max_y = np.max(coords, 0)
# ref_img_ = image_input.crop((min_x, min_y, max_x, max_y))
# h, w = ref_img_.height, ref_img_.width
# scale = self.crop_size / max(h, w)
# h_, w_ = int(scale * h), int(scale * w)
# ref_img_ = ref_img_.resize((w_, h_))
# image_input = add_margin(ref_img_, size=image_size)
# else:
# image_input = add_margin(image_input, size=max(image_input.height, image_input.width))
# image_input = image_input.resize((image_size, image_size))
# img = scale_and_place_object(img, self.scale_ratio)
img = np.array(image_input)
img = img.astype(np.float32) / 255. # [0, 1]
assert img.shape[-1] == 4 # RGBA
alpha = img[...,3:4]
img = img[...,:3] * alpha + bg_color * (1 - alpha)
if return_type == "np":
pass
elif return_type == "pt":
img = torch.from_numpy(img)
alpha = torch.from_numpy(alpha)
else:
raise NotImplementedError
return img, alpha
def __len__(self):
return len(self.file_list)
def __getitem__(self, index):
# image = self.all_images[index%len(self.all_images)]
# alpha = self.all_alphas[index%len(self.all_images)]
cam_type = self.cam_types[index%len(self.file_list)]
if self.file_list is not None:
filename = self.file_list[index%len(self.file_list)].replace(".png", "")
else:
filename = 'null'
cond_w2c = self.fix_cam_poses['front']
tgt_w2cs = [self.fix_cam_poses[view] for view in self.view_types]
elevations = []
azimuths = []
img_tensors_in = []
for view in self.view_types:
img_path = os.path.join(self.root_dir, filename, cam_type,"color_000_%s.png" % (view))
img_tensor, alpha = self.load_image(img_path, self.bg_color, return_type="pt")
img_tensor = img_tensor.permute(2, 0, 1)
img_tensors_in.append(img_tensor)
alpha_tensors_in = [
alpha.permute(2, 0, 1)
] * self.num_views
for view, tgt_w2c in zip(self.view_types, tgt_w2cs):
# evelations, azimuths
elevation, azimuth = self.get_T(tgt_w2c, cond_w2c)
elevations.append(elevation)
azimuths.append(azimuth)
img_tensors_in = torch.stack(img_tensors_in, dim=0).float() # (Nv, 3, H, W)
# alpha_tensors_in = torch.stack(alpha_tensors_in, dim=0).float() # (Nv, 3, H, W)
elevations = torch.as_tensor(elevations).float().squeeze(1)
azimuths = torch.as_tensor(azimuths).float().squeeze(1)
elevations_cond = torch.as_tensor([0] * self.num_views).float()
normal_class = torch.tensor([1, 0]).float()
normal_task_embeddings = torch.stack([normal_class] * self.num_views, dim=0) # (Nv, 2)
color_class = torch.tensor([0, 1]).float()
depth_task_embeddings = torch.stack([color_class] * self.num_views, dim=0) # (Nv, 2)
camera_embeddings = torch.stack([elevations_cond, elevations, azimuths], dim=-1) # (Nv, 3)
if cam_type == 'ortho':
cam_type_emb = torch.tensor([0, 1]).expand(self.num_views, -1)
else:
cam_type_emb = torch.tensor([1, 0]).expand(self.num_views, -1)
if self.load_cam_type:
camera_embeddings = torch.cat((camera_embeddings, cam_type_emb), dim=-1) # (Nv, 5)
out = {
'elevations_cond': elevations_cond,
'elevations_cond_deg': torch.rad2deg(elevations_cond),
'elevations': elevations,
'azimuths': azimuths,
'elevations_deg': torch.rad2deg(elevations),
'azimuths_deg': torch.rad2deg(azimuths),
'imgs_in': img_tensors_in,
'alphas': alpha_tensors_in,
'camera_embeddings': camera_embeddings,
'normal_task_embeddings': normal_task_embeddings,
'depth_task_embeddings': depth_task_embeddings,
'filename': filename,
'cam_type': cam_type
}
return out
|