Spaces:
Sleeping
Sleeping
import numpy as np | |
def camNormal2worldNormal(rot_c2w, camNormal): | |
H,W,_ = camNormal.shape | |
normal_img = np.matmul(rot_c2w[None, :, :], camNormal.reshape(-1,3)[:, :, None]).reshape([H, W, 3]) | |
return normal_img | |
def worldNormal2camNormal(rot_w2c, normal_map_world): | |
H,W,_ = normal_map_world.shape | |
# normal_img = np.matmul(rot_w2c[None, :, :], worldNormal.reshape(-1,3)[:, :, None]).reshape([H, W, 3]) | |
# faster version | |
# Reshape the normal map into a 2D array where each row represents a normal vector | |
normal_map_flat = normal_map_world.reshape(-1, 3) | |
# Transform the normal vectors using the transformation matrix | |
normal_map_camera_flat = np.dot(normal_map_flat, rot_w2c.T) | |
# Reshape the transformed normal map back to its original shape | |
normal_map_camera = normal_map_camera_flat.reshape(normal_map_world.shape) | |
return normal_map_camera | |
def trans_normal(normal, RT_w2c, RT_w2c_target): | |
# normal_world = camNormal2worldNormal(np.linalg.inv(RT_w2c[:3,:3]), normal) | |
# normal_target_cam = worldNormal2camNormal(RT_w2c_target[:3,:3], normal_world) | |
relative_RT = np.matmul(RT_w2c_target[:3,:3], np.linalg.inv(RT_w2c[:3,:3])) | |
normal_target_cam = worldNormal2camNormal(relative_RT[:3,:3], normal) | |
return normal_target_cam | |
def img2normal(img): | |
return (img/255.)*2-1 | |
def normal2img(normal): | |
return np.uint8((normal*0.5+0.5)*255) | |
def norm_normalize(normal, dim=-1): | |
normal = normal/(np.linalg.norm(normal, axis=dim, keepdims=True)+1e-6) | |
return normal |