Spaces:
Sleeping
Sleeping
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Any, Dict, Optional, Tuple | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from diffusers.utils import is_torch_version, logging | |
from diffusers.models.attention import AdaGroupNorm | |
from diffusers.models.attention_processor import Attention, AttnAddedKVProcessor, AttnAddedKVProcessor2_0 | |
from diffusers.models.dual_transformer_2d import DualTransformer2DModel | |
from diffusers.models.resnet import Downsample2D, FirDownsample2D, FirUpsample2D, KDownsample2D, KUpsample2D, ResnetBlock2D, Upsample2D | |
from mvdiffusion.models.transformer_mv2d import TransformerMV2DModel | |
from diffusers.models.unet_2d_blocks import DownBlock2D, ResnetDownsampleBlock2D, AttnDownBlock2D, CrossAttnDownBlock2D, SimpleCrossAttnDownBlock2D, SkipDownBlock2D, AttnSkipDownBlock2D, DownEncoderBlock2D, AttnDownEncoderBlock2D, KDownBlock2D, KCrossAttnDownBlock2D | |
from diffusers.models.unet_2d_blocks import UpBlock2D, ResnetUpsampleBlock2D, CrossAttnUpBlock2D, SimpleCrossAttnUpBlock2D, AttnUpBlock2D, SkipUpBlock2D, AttnSkipUpBlock2D, UpDecoderBlock2D, AttnUpDecoderBlock2D, KUpBlock2D, KCrossAttnUpBlock2D | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
def get_down_block( | |
down_block_type, | |
num_layers, | |
in_channels, | |
out_channels, | |
temb_channels, | |
add_downsample, | |
resnet_eps, | |
resnet_act_fn, | |
transformer_layers_per_block=1, | |
num_attention_heads=None, | |
resnet_groups=None, | |
cross_attention_dim=None, | |
downsample_padding=None, | |
dual_cross_attention=False, | |
use_linear_projection=False, | |
only_cross_attention=False, | |
upcast_attention=False, | |
resnet_time_scale_shift="default", | |
resnet_skip_time_act=False, | |
resnet_out_scale_factor=1.0, | |
cross_attention_norm=None, | |
attention_head_dim=None, | |
downsample_type=None, | |
num_views=1 | |
): | |
# If attn head dim is not defined, we default it to the number of heads | |
if attention_head_dim is None: | |
logger.warn( | |
f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}." | |
) | |
attention_head_dim = num_attention_heads | |
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type | |
if down_block_type == "DownBlock2D": | |
return DownBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
add_downsample=add_downsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
downsample_padding=downsample_padding, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
) | |
elif down_block_type == "ResnetDownsampleBlock2D": | |
return ResnetDownsampleBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
add_downsample=add_downsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
skip_time_act=resnet_skip_time_act, | |
output_scale_factor=resnet_out_scale_factor, | |
) | |
elif down_block_type == "AttnDownBlock2D": | |
if add_downsample is False: | |
downsample_type = None | |
else: | |
downsample_type = downsample_type or "conv" # default to 'conv' | |
return AttnDownBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
downsample_padding=downsample_padding, | |
attention_head_dim=attention_head_dim, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
downsample_type=downsample_type, | |
) | |
elif down_block_type == "CrossAttnDownBlock2D": | |
if cross_attention_dim is None: | |
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D") | |
return CrossAttnDownBlock2D( | |
num_layers=num_layers, | |
transformer_layers_per_block=transformer_layers_per_block, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
add_downsample=add_downsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
downsample_padding=downsample_padding, | |
cross_attention_dim=cross_attention_dim, | |
num_attention_heads=num_attention_heads, | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
) | |
# custom MV2D attention block | |
elif down_block_type == "CrossAttnDownBlockMV2D": | |
if cross_attention_dim is None: | |
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlockMV2D") | |
return CrossAttnDownBlockMV2D( | |
num_layers=num_layers, | |
transformer_layers_per_block=transformer_layers_per_block, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
add_downsample=add_downsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
downsample_padding=downsample_padding, | |
cross_attention_dim=cross_attention_dim, | |
num_attention_heads=num_attention_heads, | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
num_views=num_views | |
) | |
elif down_block_type == "SimpleCrossAttnDownBlock2D": | |
if cross_attention_dim is None: | |
raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnDownBlock2D") | |
return SimpleCrossAttnDownBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
add_downsample=add_downsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
cross_attention_dim=cross_attention_dim, | |
attention_head_dim=attention_head_dim, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
skip_time_act=resnet_skip_time_act, | |
output_scale_factor=resnet_out_scale_factor, | |
only_cross_attention=only_cross_attention, | |
cross_attention_norm=cross_attention_norm, | |
) | |
elif down_block_type == "SkipDownBlock2D": | |
return SkipDownBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
add_downsample=add_downsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
downsample_padding=downsample_padding, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
) | |
elif down_block_type == "AttnSkipDownBlock2D": | |
return AttnSkipDownBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
add_downsample=add_downsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
attention_head_dim=attention_head_dim, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
) | |
elif down_block_type == "DownEncoderBlock2D": | |
return DownEncoderBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
add_downsample=add_downsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
downsample_padding=downsample_padding, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
) | |
elif down_block_type == "AttnDownEncoderBlock2D": | |
return AttnDownEncoderBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
add_downsample=add_downsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
downsample_padding=downsample_padding, | |
attention_head_dim=attention_head_dim, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
) | |
elif down_block_type == "KDownBlock2D": | |
return KDownBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
add_downsample=add_downsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
) | |
elif down_block_type == "KCrossAttnDownBlock2D": | |
return KCrossAttnDownBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
add_downsample=add_downsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
cross_attention_dim=cross_attention_dim, | |
attention_head_dim=attention_head_dim, | |
add_self_attention=True if not add_downsample else False, | |
) | |
raise ValueError(f"{down_block_type} does not exist.") | |
def get_up_block( | |
up_block_type, | |
num_layers, | |
in_channels, | |
out_channels, | |
prev_output_channel, | |
temb_channels, | |
add_upsample, | |
resnet_eps, | |
resnet_act_fn, | |
transformer_layers_per_block=1, | |
num_attention_heads=None, | |
resnet_groups=None, | |
cross_attention_dim=None, | |
dual_cross_attention=False, | |
use_linear_projection=False, | |
only_cross_attention=False, | |
upcast_attention=False, | |
resnet_time_scale_shift="default", | |
resnet_skip_time_act=False, | |
resnet_out_scale_factor=1.0, | |
cross_attention_norm=None, | |
attention_head_dim=None, | |
upsample_type=None, | |
num_views=1 | |
): | |
# If attn head dim is not defined, we default it to the number of heads | |
if attention_head_dim is None: | |
logger.warn( | |
f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}." | |
) | |
attention_head_dim = num_attention_heads | |
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type | |
if up_block_type == "UpBlock2D": | |
return UpBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
prev_output_channel=prev_output_channel, | |
temb_channels=temb_channels, | |
add_upsample=add_upsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
) | |
elif up_block_type == "ResnetUpsampleBlock2D": | |
return ResnetUpsampleBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
prev_output_channel=prev_output_channel, | |
temb_channels=temb_channels, | |
add_upsample=add_upsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
skip_time_act=resnet_skip_time_act, | |
output_scale_factor=resnet_out_scale_factor, | |
) | |
elif up_block_type == "CrossAttnUpBlock2D": | |
if cross_attention_dim is None: | |
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D") | |
return CrossAttnUpBlock2D( | |
num_layers=num_layers, | |
transformer_layers_per_block=transformer_layers_per_block, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
prev_output_channel=prev_output_channel, | |
temb_channels=temb_channels, | |
add_upsample=add_upsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
cross_attention_dim=cross_attention_dim, | |
num_attention_heads=num_attention_heads, | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
) | |
# custom MV2D attention block | |
elif up_block_type == "CrossAttnUpBlockMV2D": | |
if cross_attention_dim is None: | |
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlockMV2D") | |
return CrossAttnUpBlockMV2D( | |
num_layers=num_layers, | |
transformer_layers_per_block=transformer_layers_per_block, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
prev_output_channel=prev_output_channel, | |
temb_channels=temb_channels, | |
add_upsample=add_upsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
cross_attention_dim=cross_attention_dim, | |
num_attention_heads=num_attention_heads, | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
num_views=num_views | |
) | |
elif up_block_type == "SimpleCrossAttnUpBlock2D": | |
if cross_attention_dim is None: | |
raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnUpBlock2D") | |
return SimpleCrossAttnUpBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
prev_output_channel=prev_output_channel, | |
temb_channels=temb_channels, | |
add_upsample=add_upsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
cross_attention_dim=cross_attention_dim, | |
attention_head_dim=attention_head_dim, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
skip_time_act=resnet_skip_time_act, | |
output_scale_factor=resnet_out_scale_factor, | |
only_cross_attention=only_cross_attention, | |
cross_attention_norm=cross_attention_norm, | |
) | |
elif up_block_type == "AttnUpBlock2D": | |
if add_upsample is False: | |
upsample_type = None | |
else: | |
upsample_type = upsample_type or "conv" # default to 'conv' | |
return AttnUpBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
prev_output_channel=prev_output_channel, | |
temb_channels=temb_channels, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
attention_head_dim=attention_head_dim, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
upsample_type=upsample_type, | |
) | |
elif up_block_type == "SkipUpBlock2D": | |
return SkipUpBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
prev_output_channel=prev_output_channel, | |
temb_channels=temb_channels, | |
add_upsample=add_upsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
) | |
elif up_block_type == "AttnSkipUpBlock2D": | |
return AttnSkipUpBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
prev_output_channel=prev_output_channel, | |
temb_channels=temb_channels, | |
add_upsample=add_upsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
attention_head_dim=attention_head_dim, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
) | |
elif up_block_type == "UpDecoderBlock2D": | |
return UpDecoderBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
add_upsample=add_upsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
temb_channels=temb_channels, | |
) | |
elif up_block_type == "AttnUpDecoderBlock2D": | |
return AttnUpDecoderBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
add_upsample=add_upsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
attention_head_dim=attention_head_dim, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
temb_channels=temb_channels, | |
) | |
elif up_block_type == "KUpBlock2D": | |
return KUpBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
add_upsample=add_upsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
) | |
elif up_block_type == "KCrossAttnUpBlock2D": | |
return KCrossAttnUpBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
add_upsample=add_upsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
cross_attention_dim=cross_attention_dim, | |
attention_head_dim=attention_head_dim, | |
) | |
raise ValueError(f"{up_block_type} does not exist.") | |
class UNetMidBlockMV2DCrossAttn(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
transformer_layers_per_block: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
num_attention_heads=1, | |
output_scale_factor=1.0, | |
cross_attention_dim=1280, | |
dual_cross_attention=False, | |
use_linear_projection=False, | |
upcast_attention=False, | |
num_views: int = 1, | |
joint_attention: bool = False, | |
joint_attention_twice: bool = False, | |
multiview_attention: bool = True, | |
cross_domain_attention: bool=False | |
): | |
super().__init__() | |
self.has_cross_attention = True | |
self.num_attention_heads = num_attention_heads | |
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) | |
# there is always at least one resnet | |
resnets = [ | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
] | |
attentions = [] | |
for _ in range(num_layers): | |
if not dual_cross_attention: | |
attentions.append( | |
TransformerMV2DModel( | |
num_attention_heads, | |
in_channels // num_attention_heads, | |
in_channels=in_channels, | |
num_layers=transformer_layers_per_block, | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
use_linear_projection=use_linear_projection, | |
upcast_attention=upcast_attention, | |
num_views=num_views, | |
joint_attention=joint_attention, | |
joint_attention_twice=joint_attention_twice, | |
multiview_attention=multiview_attention, | |
cross_domain_attention=cross_domain_attention | |
) | |
) | |
else: | |
raise NotImplementedError | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
temb: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
) -> torch.FloatTensor: | |
hidden_states = self.resnets[0](hidden_states, temb) | |
for attn, resnet in zip(self.attentions, self.resnets[1:]): | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
)[0] | |
hidden_states = resnet(hidden_states, temb) | |
return hidden_states | |
class CrossAttnUpBlockMV2D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
prev_output_channel: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
transformer_layers_per_block: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
num_attention_heads=1, | |
cross_attention_dim=1280, | |
output_scale_factor=1.0, | |
add_upsample=True, | |
dual_cross_attention=False, | |
use_linear_projection=False, | |
only_cross_attention=False, | |
upcast_attention=False, | |
num_views: int = 1 | |
): | |
super().__init__() | |
resnets = [] | |
attentions = [] | |
self.has_cross_attention = True | |
self.num_attention_heads = num_attention_heads | |
for i in range(num_layers): | |
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=resnet_in_channels + res_skip_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
if not dual_cross_attention: | |
attentions.append( | |
TransformerMV2DModel( | |
num_attention_heads, | |
out_channels // num_attention_heads, | |
in_channels=out_channels, | |
num_layers=transformer_layers_per_block, | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
num_views=num_views | |
) | |
) | |
else: | |
raise NotImplementedError | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
if add_upsample: | |
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) | |
else: | |
self.upsamplers = None | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | |
temb: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
upsample_size: Optional[int] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
): | |
for resnet, attn in zip(self.resnets, self.attentions): | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
**ckpt_kwargs, | |
) | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(attn, return_dict=False), | |
hidden_states, | |
encoder_hidden_states, | |
None, # timestep | |
None, # class_labels | |
cross_attention_kwargs, | |
attention_mask, | |
encoder_attention_mask, | |
**ckpt_kwargs, | |
)[0] | |
else: | |
hidden_states = resnet(hidden_states, temb) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
)[0] | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states, upsample_size) | |
return hidden_states | |
class CrossAttnDownBlockMV2D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
transformer_layers_per_block: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
num_attention_heads=1, | |
cross_attention_dim=1280, | |
output_scale_factor=1.0, | |
downsample_padding=1, | |
add_downsample=True, | |
dual_cross_attention=False, | |
use_linear_projection=False, | |
only_cross_attention=False, | |
upcast_attention=False, | |
num_views: int = 1 | |
): | |
super().__init__() | |
resnets = [] | |
attentions = [] | |
self.has_cross_attention = True | |
self.num_attention_heads = num_attention_heads | |
for i in range(num_layers): | |
in_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
if not dual_cross_attention: | |
attentions.append( | |
TransformerMV2DModel( | |
num_attention_heads, | |
out_channels // num_attention_heads, | |
in_channels=out_channels, | |
num_layers=transformer_layers_per_block, | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
num_views=num_views | |
) | |
) | |
else: | |
raise NotImplementedError | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
if add_downsample: | |
self.downsamplers = nn.ModuleList( | |
[ | |
Downsample2D( | |
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" | |
) | |
] | |
) | |
else: | |
self.downsamplers = None | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
temb: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
additional_residuals=None, | |
): | |
output_states = () | |
blocks = list(zip(self.resnets, self.attentions)) | |
for i, (resnet, attn) in enumerate(blocks): | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
**ckpt_kwargs, | |
) | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(attn, return_dict=False), | |
hidden_states, | |
encoder_hidden_states, | |
None, # timestep | |
None, # class_labels | |
cross_attention_kwargs, | |
attention_mask, | |
encoder_attention_mask, | |
**ckpt_kwargs, | |
)[0] | |
else: | |
hidden_states = resnet(hidden_states, temb) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
)[0] | |
# apply additional residuals to the output of the last pair of resnet and attention blocks | |
if i == len(blocks) - 1 and additional_residuals is not None: | |
hidden_states = hidden_states + additional_residuals | |
output_states = output_states + (hidden_states,) | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states) | |
output_states = output_states + (hidden_states,) | |
return hidden_states, output_states | |