Spaces:
Running
on
L4
Running
on
L4
flamehaze1115
commited on
Update gradio_app.py
Browse files- gradio_app.py +5 -8
gradio_app.py
CHANGED
@@ -29,10 +29,7 @@ from mvdiffusion.pipelines.pipeline_mvdiffusion_image import MVDiffusionImagePip
|
|
29 |
from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler
|
30 |
from einops import rearrange
|
31 |
import numpy as np
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
|
37 |
def save_image(tensor):
|
38 |
ndarr = tensor.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
|
@@ -60,10 +57,10 @@ if not hasattr(Image, 'Resampling'):
|
|
60 |
|
61 |
|
62 |
def sam_init():
|
63 |
-
sam_checkpoint = os.path.join(os.path.dirname(__file__), "sam_pt", "sam_vit_h_4b8939.pth")
|
64 |
-
model_type = "vit_h"
|
65 |
-
|
66 |
-
sam =
|
67 |
predictor = SamPredictor(sam)
|
68 |
return predictor
|
69 |
|
|
|
29 |
from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler
|
30 |
from einops import rearrange
|
31 |
import numpy as np
|
32 |
+
from transformers import SamModel
|
|
|
|
|
|
|
33 |
|
34 |
def save_image(tensor):
|
35 |
ndarr = tensor.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
|
|
|
57 |
|
58 |
|
59 |
def sam_init():
|
60 |
+
# sam_checkpoint = os.path.join(os.path.dirname(__file__), "sam_pt", "sam_vit_h_4b8939.pth")
|
61 |
+
# model_type = "vit_h"
|
62 |
+
# sam = sam_model_registry[model_type](checkpoint=sam_checkpoint).to(device=f"cuda:{_GPU_ID}")
|
63 |
+
sam = SamModel.from_pretrained("facebook/sam-vit-huge").to(device=f"cuda:{_GPU_ID}")
|
64 |
predictor = SamPredictor(sam)
|
65 |
return predictor
|
66 |
|