import os import torch import fire import gradio as gr from PIL import Image from functools import partial import cv2 import time import numpy as np from rembg import remove from segment_anything import sam_model_registry, SamPredictor import os import sys import numpy import torch import rembg import threading import urllib.request from PIL import Image from typing import Dict, Optional, Tuple, List from dataclasses import dataclass import huggingface_hub from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from mvdiffusion.models.unet_mv2d_condition import UNetMV2DConditionModel from mvdiffusion.data.single_image_dataset import SingleImageDataset as MVDiffusionDataset from mvdiffusion.pipelines.pipeline_mvdiffusion_image import MVDiffusionImagePipeline from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler from einops import rearrange import numpy as np from transformers import SamModel, SamProcessor def save_image(tensor): ndarr = tensor.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy() # pdb.set_trace() im = Image.fromarray(ndarr) return ndarr weight_dtype = torch.float16 _TITLE = '''Wonder3D: Single Image to 3D using Cross-Domain Diffusion''' _DESCRIPTION = '''
Generate consistent multi-view normals maps and color images.
The demo does not include the mesh reconstruction part, please visit our github repo to get a textured mesh.
''' _GPU_ID = 0 if not hasattr(Image, 'Resampling'): Image.Resampling = Image def sam_init(): predictor = pipeline("mask-generation", device = f"cuda:{_GPU_ID}", points_per_batch = 256) return predictor def sam_segment(predictor, input_image, *bbox_coords): bbox = np.array(bbox_coords) image = np.asarray(input_image) start_time = time.time() predictor.set_image(image) generator(image_url, points_per_batch = 256) print(f"SAM Time: {time.time() - start_time:.3f}s") out_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8) out_image[:, :, :3] = image out_image_bbox = out_image.copy() out_image_bbox[:, :, 3] = outputs["masks"][-1].astype(np.uint8) * 255 torch.cuda.empty_cache() return Image.fromarray(out_image_bbox, mode='RGBA') def expand2square(pil_img, background_color): width, height = pil_img.size if width == height: return pil_img elif width > height: result = Image.new(pil_img.mode, (width, width), background_color) result.paste(pil_img, (0, (width - height) // 2)) return result else: result = Image.new(pil_img.mode, (height, height), background_color) result.paste(pil_img, ((height - width) // 2, 0)) return result def preprocess(predictor, input_image, chk_group=None, segment=True, rescale=False): RES = 1024 input_image.thumbnail([RES, RES], Image.Resampling.LANCZOS) if chk_group is not None: segment = "Background Removal" in chk_group rescale = "Rescale" in chk_group if segment: image_rem = input_image.convert('RGBA') image_nobg = remove(image_rem, alpha_matting=True) arr = np.asarray(image_nobg)[:,:,-1] x_nonzero = np.nonzero(arr.sum(axis=0)) y_nonzero = np.nonzero(arr.sum(axis=1)) x_min = int(x_nonzero[0].min()) y_min = int(y_nonzero[0].min()) x_max = int(x_nonzero[0].max()) y_max = int(y_nonzero[0].max()) input_image = sam_segment(predictor, input_image.convert('RGB'), x_min, y_min, x_max, y_max) # Rescale and recenter if rescale: image_arr = np.array(input_image) in_w, in_h = image_arr.shape[:2] out_res = min(RES, max(in_w, in_h)) ret, mask = cv2.threshold(np.array(input_image.split()[-1]), 0, 255, cv2.THRESH_BINARY) x, y, w, h = cv2.boundingRect(mask) max_size = max(w, h) ratio = 0.75 side_len = int(max_size / ratio) padded_image = np.zeros((side_len, side_len, 4), dtype=np.uint8) center = side_len//2 padded_image[center-h//2:center-h//2+h, center-w//2:center-w//2+w] = image_arr[y:y+h, x:x+w] rgba = Image.fromarray(padded_image).resize((out_res, out_res), Image.LANCZOS) rgba_arr = np.array(rgba) / 255.0 rgb = rgba_arr[...,:3] * rgba_arr[...,-1:] + (1 - rgba_arr[...,-1:]) input_image = Image.fromarray((rgb * 255).astype(np.uint8)) else: input_image = expand2square(input_image, (127, 127, 127, 0)) return input_image, input_image.resize((320, 320), Image.Resampling.LANCZOS) def load_wonder3d_pipeline(cfg): # Load scheduler, tokenizer and models. # noise_scheduler = DDPMScheduler.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="scheduler") image_encoder = CLIPVisionModelWithProjection.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="image_encoder", revision=cfg.revision) feature_extractor = CLIPImageProcessor.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="feature_extractor", revision=cfg.revision) vae = AutoencoderKL.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="vae", revision=cfg.revision) unet = UNetMV2DConditionModel.from_pretrained_2d(cfg.pretrained_unet_path, subfolder="unet", revision=cfg.revision, **cfg.unet_from_pretrained_kwargs) unet.enable_xformers_memory_efficient_attention() # Move text_encode and vae to gpu and cast to weight_dtype image_encoder.to(dtype=weight_dtype) vae.to(dtype=weight_dtype) unet.to(dtype=weight_dtype) pipeline = MVDiffusionImagePipeline( image_encoder=image_encoder, feature_extractor=feature_extractor, vae=vae, unet=unet, safety_checker=None, scheduler=DDIMScheduler.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="scheduler"), **cfg.pipe_kwargs ) if torch.cuda.is_available(): pipeline.to('cuda:0') # sys.main_lock = threading.Lock() return pipeline from mvdiffusion.data.single_image_dataset import SingleImageDataset def prepare_data(single_image, crop_size): dataset = SingleImageDataset( root_dir = None, num_views = 6, img_wh=[256, 256], bg_color='white', crop_size=crop_size, single_image=single_image ) return dataset[0] def run_pipeline(pipeline, cfg, single_image, guidance_scale, steps, seed, crop_size): import pdb # pdb.set_trace() batch = prepare_data(single_image, crop_size) pipeline.set_progress_bar_config(disable=True) seed = int(seed) generator = torch.Generator(device=pipeline.unet.device).manual_seed(seed) # repeat (2B, Nv, 3, H, W) imgs_in = torch.cat([batch['imgs_in']]*2, dim=0).to(weight_dtype) # (2B, Nv, Nce) camera_embeddings = torch.cat([batch['camera_embeddings']]*2, dim=0).to(weight_dtype) task_embeddings = torch.cat([batch['normal_task_embeddings'], batch['color_task_embeddings']], dim=0).to(weight_dtype) camera_embeddings = torch.cat([camera_embeddings, task_embeddings], dim=-1).to(weight_dtype) # (B*Nv, 3, H, W) imgs_in = rearrange(imgs_in, "Nv C H W -> (Nv) C H W") # (B*Nv, Nce) # camera_embeddings = rearrange(camera_embeddings, "B Nv Nce -> (B Nv) Nce") out = pipeline( imgs_in, camera_embeddings, generator=generator, guidance_scale=guidance_scale, num_inference_steps=steps, output_type='pt', num_images_per_prompt=1, **cfg.pipe_validation_kwargs ).images bsz = out.shape[0] // 2 normals_pred = out[:bsz] images_pred = out[bsz:] normals_pred = [save_image(normals_pred[i]) for i in range(bsz)] images_pred = [save_image(images_pred[i]) for i in range(bsz)] out = images_pred + normals_pred return *out, images_pred, normals_pred @dataclass class TestConfig: pretrained_model_name_or_path: str pretrained_unet_path:str revision: Optional[str] validation_dataset: Dict save_dir: str seed: Optional[int] validation_batch_size: int dataloader_num_workers: int local_rank: int pipe_kwargs: Dict pipe_validation_kwargs: Dict unet_from_pretrained_kwargs: Dict validation_guidance_scales: List[float] validation_grid_nrow: int camera_embedding_lr_mult: float num_views: int camera_embedding_type: str pred_type: str # joint, or ablation enable_xformers_memory_efficient_attention: bool cond_on_normals: bool cond_on_colors: bool def run_demo(): from utils.misc import load_config from omegaconf import OmegaConf # parse YAML config to OmegaConf cfg = load_config("./configs/mvdiffusion-joint-ortho-6views.yaml") # print(cfg) schema = OmegaConf.structured(TestConfig) cfg = OmegaConf.merge(schema, cfg) pipeline = load_wonder3d_pipeline(cfg) torch.set_grad_enabled(False) pipeline.to(f'cuda:{_GPU_ID}') predictor = sam_init() custom_theme = gr.themes.Soft(primary_hue="blue").set( button_secondary_background_fill="*neutral_100", button_secondary_background_fill_hover="*neutral_200") custom_css = '''#disp_image { text-align: center; /* Horizontally center the content */ }''' with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo: with gr.Row(): with gr.Column(scale=1): gr.Markdown('# ' + _TITLE) gr.Markdown(_DESCRIPTION) with gr.Row(variant='panel'): with gr.Column(scale=1): input_image = gr.Image(type='pil', image_mode='RGBA', height=320, label='Input image') example_folder = os.path.join(os.path.dirname(__file__), "./example_images") example_fns = [os.path.join(example_folder, example) for example in os.listdir(example_folder)] gr.Examples( examples=example_fns, inputs=[input_image], # outputs=[input_image], cache_examples=False, label='Examples (click one of the images below to start)', examples_per_page=30 ) with gr.Column(scale=1): processed_image = gr.Image(type='pil', label="Processed Image", interactive=False, height=320, image_mode='RGBA', elem_id="disp_image") processed_image_highres = gr.Image(type='pil', image_mode='RGBA', visible=False) with gr.Accordion('Advanced options', open=True): with gr.Row(): with gr.Column(): input_processing = gr.CheckboxGroup(['Background Removal'], label='Input Image Preprocessing', value=['Background Removal'], info='untick this, if masked image with alpha channel') with gr.Column(): output_processing = gr.CheckboxGroup(['Background Removal'], label='Output Image Postprocessing', value=[]) with gr.Row(): with gr.Column(): scale_slider = gr.Slider(1, 5, value=3, step=1, label='Classifier Free Guidance Scale') with gr.Column(): steps_slider = gr.Slider(15, 100, value=50, step=1, label='Number of Diffusion Inference Steps') with gr.Row(): with gr.Column(): seed = gr.Number(42, label='Seed') with gr.Column(): crop_size = gr.Number(192, label='Crop size') # crop_size = 192 run_btn = gr.Button('Generate', variant='primary', interactive=True) with gr.Row(): view_1 = gr.Image(interactive=False, height=240, show_label=False) view_2 = gr.Image(interactive=False, height=240, show_label=False) view_3 = gr.Image(interactive=False, height=240, show_label=False) view_4 = gr.Image(interactive=False, height=240, show_label=False) view_5 = gr.Image(interactive=False, height=240, show_label=False) view_6 = gr.Image(interactive=False, height=240, show_label=False) with gr.Row(): normal_1 = gr.Image(interactive=False, height=240, show_label=False) normal_2 = gr.Image(interactive=False, height=240, show_label=False) normal_3 = gr.Image(interactive=False, height=240, show_label=False) normal_4 = gr.Image(interactive=False, height=240, show_label=False) normal_5 = gr.Image(interactive=False, height=240, show_label=False) normal_6 = gr.Image(interactive=False, height=240, show_label=False) with gr.Row(): view_gallery = gr.Gallery(interactive=False, show_label=False, container=True, preview=True, allow_preview=False, height=1200) normal_gallery = gr.Gallery(interactive=False, show_label=False, container=True, preview=True, allow_preview=False, height=1200) run_btn.click(fn=partial(preprocess, predictor), inputs=[input_image, input_processing], outputs=[processed_image_highres, processed_image], queue=True ).success(fn=partial(run_pipeline, pipeline, cfg), inputs=[processed_image_highres, scale_slider, steps_slider, seed, crop_size], outputs=[view_1, view_2, view_3, view_4, view_5, view_6, normal_1, normal_2, normal_3, normal_4, normal_5, normal_6, view_gallery, normal_gallery] ) demo.queue().launch(share=True, max_threads=80) if __name__ == '__main__': fire.Fire(run_demo)